A180270 Integers of the form (k^12 - k^8 - k^4 + 1)/512.
0, 1025, 476073, 27022500, 551536100, 6129324225, 45502479225, 253405810448, 1137920432400, 4322847530025, 14366776735025, 42801847892100, 116415023802948, 293153032943225, 691043521403025, 1538402208782400
Offset: 1
Examples
a(2) = 1025 is in the sequence because (3^12 - 3^8 - 3^4 + 1)/512 = 524800/512 = 1025.
Links
- B. Berselli, Table of n, a(n) for n = 1..100000. [From _Bruno Berselli_, Sep 21 2010]
Programs
-
Maple
for n from 1 by 2 to 60 do: x:= (n^12-n^8 -n^4+1)/512: printf(`%d, `, x):od: # incomplete program which also prints rationals, R. J. Mathar
-
Mathematica
Select[Table[(k^12-k^8-k^4+1)/512,{k,40}],IntegerQ] (* Harvey P. Dale, Jan 23 2011 *)
Formula
Integers of the form (k^4+1)*( (k-1)*(k+1)*(k^2+1) )^2/512.
a(n) = ((2*n-1)^4+1)*((n-1)*n*(n^2+(n-1)^2))^2/8 (for k=2n-1).
Extensions
Comment converted to formula by R. J. Mathar, Aug 25 2010
Example corrected and general term of the sequence rewritten by Bruno Berselli, Sep 22 2010