cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180363 a(n) = Lucas(prime(n)).

Original entry on oeis.org

3, 4, 11, 29, 199, 521, 3571, 9349, 64079, 1149851, 3010349, 54018521, 370248451, 969323029, 6643838879, 119218851371, 2139295485799, 5600748293801, 100501350283429, 688846502588399, 1803423556807921, 32361122672259149, 221806434537978679
Offset: 1

Views

Author

Jonathan Vos Post, Aug 31 2010

Keywords

Comments

This is to A030426, Fibonacci(prime(n)), as A000032 (Lucas numbers beginning at 2) is to A000045.

Examples

			a(1) = 3 because the 1st prime is 2, and the 2nd Lucas number is A000032(2) = 3.
a(2) = 4 because the 2nd prime is 3, and the 3rd Lucas number is A000032(3) = 4.
a(3) = 11 because the 3rd prime is 5, and the 5th Lucas number is A000032(5) = 11.
		

Crossrefs

Programs

  • Magma
    [Lucas(NthPrime(n)): n in [1..30]]; // Vincenzo Librandi, Dec 01 2015
    
  • Maple
    A180363 := proc(n) A000032(ithprime(n)) ; end proc: seq(A180363(n),n=1..30) ; # R. J. Mathar, Sep 01 2010
    # second Maple program:
    a:= n-> (<<1|1>, <1|0>>^ithprime(n). <<2, -1>>)[1, 1]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Jan 03 2022
  • Mathematica
    LucasL[Prime[Range[30]]] (* Vincenzo Librandi, Dec 01 2015 *)
  • Python
    from sympy import lucas, prime
    def a(n): return lucas(prime(n))
    print([a(n) for n in range(1, 24)]) # Michael S. Branicky, Dec 30 2021

Formula

a(n) = A000032(A000040(n)) = Lucas(prime(n)).
a(n) = A032170(A000040(n)) / A064723(n-1) - 1 for n>1. - Flávio V. Fernandes, Dec 30 2021

Extensions

Entries checked by R. J. Mathar, Sep 01 2010
Edited by N. J. A. Sloane, Nov 28 2011