A180363 a(n) = Lucas(prime(n)).
3, 4, 11, 29, 199, 521, 3571, 9349, 64079, 1149851, 3010349, 54018521, 370248451, 969323029, 6643838879, 119218851371, 2139295485799, 5600748293801, 100501350283429, 688846502588399, 1803423556807921, 32361122672259149, 221806434537978679
Offset: 1
Examples
a(1) = 3 because the 1st prime is 2, and the 2nd Lucas number is A000032(2) = 3. a(2) = 4 because the 2nd prime is 3, and the 3rd Lucas number is A000032(3) = 4. a(3) = 11 because the 3rd prime is 5, and the 5th Lucas number is A000032(5) = 11.
Links
- Table of n, a(n) for n = 1..650
- A. Aksenov, The Newman phenomenon and Lucas sequence, arXiv:1108.5352 [math.NT], 2011. [Gives factorizations of first 88 terms]
- Paula Burkhardt et al., Visual properties of generalized Kloosterman sums, arXiv:1505.00018 [math.NT], 2015.
Programs
-
Magma
[Lucas(NthPrime(n)): n in [1..30]]; // Vincenzo Librandi, Dec 01 2015
-
Maple
A180363 := proc(n) A000032(ithprime(n)) ; end proc: seq(A180363(n),n=1..30) ; # R. J. Mathar, Sep 01 2010 # second Maple program: a:= n-> (<<1|1>, <1|0>>^ithprime(n). <<2, -1>>)[1, 1]: seq(a(n), n=1..50); # Alois P. Heinz, Jan 03 2022
-
Mathematica
LucasL[Prime[Range[30]]] (* Vincenzo Librandi, Dec 01 2015 *)
-
Python
from sympy import lucas, prime def a(n): return lucas(prime(n)) print([a(n) for n in range(1, 24)]) # Michael S. Branicky, Dec 30 2021
Formula
Extensions
Entries checked by R. J. Mathar, Sep 01 2010
Edited by N. J. A. Sloane, Nov 28 2011
Comments