cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A285992 Primes in the bisected Lucas sequence A002878.

Original entry on oeis.org

11, 29, 199, 521, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149, 412670427844921037470771, 258899611203303418721656157249445530046830073044201152332257717521
Offset: 1

Views

Author

R. J. Mathar, Apr 30 2017

Keywords

Comments

Subsequence of A005479.

Crossrefs

Programs

  • Maple
    select(isprime, [seq(combinat:-fibonacci(2*n)+combinat:-fibonacci(2*n+2), n=1..200)]); # Robert Israel, May 01 2017
  • Mathematica
    Select[LucasL[Range[1, 400, 2]], PrimeQ] (* Vincenzo Librandi, May 01 2017 *)
    Select[LinearRecurrence[{3,-1},{1,4},160],PrimeQ] (* Harvey P. Dale, Sep 01 2024 *)

Formula

A002878 INTERSECT A000040.
A000032(k) for odd k in A001606. - Robert Israel, May 01 2017

A215809 Prime numbers n for which the Lucas number L(n) (see A000032) is the sum of two squares.

Original entry on oeis.org

3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 127, 163, 199, 223, 307, 313, 349, 397, 433, 523, 541, 613, 619, 709, 823, 907, 1087, 1123, 1129, 1213, 1279, 1531
Offset: 1

Views

Author

V. Raman, Aug 23 2012

Keywords

Comments

These Lucas numbers L(n) have no prime factor congruent to 3 mod 4 to an odd power.
Also prime numbers n such that the Lucas number L(n) can be written in the form a^2 + 5*b^2.
Any prime factor of Lucas(n) for n prime is always of the form 1 (mod 10) or 9 (mod 10).
A number n can be written in the form a^2+5*b^2 (see A020669) if and only if n is 0,
or of the form 2^(2i) 5^j Prod_{p==1 or 9 mod 20} p^k Prod_{q==3 or 7 mod 20) q^(2m)
or of the form 2^(2i+1) 5^j Prod_{p==1 or 9 mod 20} p^k Prod_{q==3 or 7 mod 20) q^(2m+1),
for integers i,j,k,m, for primes p,q.
1607 <= a(34) <= 1747. 1747, 1951, 2053, 2467, 5107, 5419, 5851, 7243, 7741, 8467, 13963, 14449, 14887, 15511, 15907, 35449, 51169, 193201, 344293, 387433, 574219, 901657, 1051849 are terms. - Chai Wah Wu, Jul 22 2020

Examples

			Lucas(19) = 9349 = 95^2 + 18^2.
Lucas(19) = 9349 = 23^2 + 5*42^2.
		

Crossrefs

Cf. A020669, A033205 (numbers and primes of the form x^2 + 5*y^2).

Programs

  • PARI
    forprime(i=2, 500, a=factorint(fibonacci(i-1)+fibonacci(i+1))~; has=0; for(j=1, #a, if(a[1, j]%4==3&&a[2, j]%2==1, has=1; break)); if(has==0, print(i", "))) \\ a^2+b^2 form.
    
  • PARI
    forprime(i=2, 500, a=factorint(fibonacci(i-1)+fibonacci(i+1))~; flag=0; flip=0; for(j=1, #a, if(((a[1, j]%20>10))&&a[2, j]%2==1, flag=1); if(((a[1, j]%20==2)||(a[1, j]%20==3)||(a[1, j]%20==7))&&a[2, j]%2==1, flip=flip+1)); if(flag==0&&flip%2==0, print(i", "))) \\ a^2+5*b^2 form.

Extensions

Merged A215941 into this sequence, T. D. Noe, Sep 21 2012
a(30)-a(33) from Chai Wah Wu, Jul 22 2020

A215907 Odd numbers n such that the Lucas number L(n) is the sum of two squares.

Original entry on oeis.org

1, 3, 7, 13, 19, 31, 37, 43, 49, 61, 67, 73, 79, 91, 111, 127, 163, 169, 183, 199, 223, 307, 313, 349, 361, 397, 433, 511, 523, 541, 613, 619, 709, 823, 907, 1087, 1123, 1129, 1147, 1213, 1279, 1434
Offset: 1

Views

Author

V. Raman, Aug 26 2012

Keywords

Comments

These Lucas numbers L(n) have no prime factor congruent to 3 mod 4 to an odd power.
Also, numbers n such that L(n) can be written in the form a^2 + 5*b^2.
Subsequence of A124132.
Is this A124132 without the 6? - Joerg Arndt, Sep 07 2012
Any prime factor of Lucas(n) for the prime values of n is always of the form 1 (mod 10) or 9 (mod 10).
A number n can be written in the form a^2 + 5*b^2 if and only if n is 0, or of the form 2^(2i) 5^j Product_{p==1 or 9 mod 20} p^k Product_{q==3 or 7 mod 20) q^(2m) or of the form 2^(2i+1) 5^j Product_{p==1 or 9 mod 20} p^k Product_{q==3 or 7 mod 20) q^(2m+1), for integers i,j,k,m, for primes p,q.
1501 <= a(42) <= 1531. 1531, 1651, 1747, 1849, 1951, 2053, 2413, 2449, 2467, 4069, 5107, 5419, 5851, 7243, 7741, 8467, 13963, 14449, 14887, 15511, 15907, 35449, 51169, 193201, 344293, 387433, 574219, 901657, 1051849 are terms. - Chai Wah Wu, Jul 22 2020

Examples

			Lucas(19) = 9349 = 95^2 + 18^2.
Lucas(19) = 9349 = 23^2 + 5*42^2.
		

Crossrefs

Cf. A180363.
Cf. A020669, A033205 (numbers and primes of the form x^2 + 5*y^2).

Programs

  • PARI
    for(i=2, 500, a=factorint(fibonacci(i-1)+fibonacci(i+1))~; has=0; for(j=1, #a, if(a[1, j]%4==3&&a[2, j]%2==1, has=1; break)); if(has==0&&i%2==1, print(i", "))) \\ a^2 + b^2 form.
    
  • PARI
    for(i=2, 500, a=factorint(fibonacci(i-1)+fibonacci(i+1))~; flag=0; flip=0; for(j=1, #a, if(((a[1, j]%20>10))&&a[2, j]%2==1, flag=1); if(((a[1, j]%20==2)||(a[1, j]%20==3)||(a[1, j]%20==7))&&a[2, j]%2==1, flip=flip+1)); if(flag==0&&flip%2==0, print(i", "))) \\ a^2 + 5*b^2 form.

Extensions

17 more terms from V. Raman, Aug 28 2012
A215940 merged into this sequence by T. D. Noe, Sep 21 2012
a(38)-a(41) from Chai Wah Wu, Jul 22 2020

A268478 L(p) modulo p^2, where p = prime(n) and L is a Lucas number (A000032).

Original entry on oeis.org

3, 4, 11, 29, 78, 14, 103, 324, 70, 204, 497, 519, 1477, 1420, 1881, 902, 1476, 3600, 3418, 2202, 5257, 317, 914, 5074, 4269, 9192, 5666, 6421, 7086, 4182, 12193, 3800, 1097, 11677, 299, 22651, 17271, 12063, 18371, 26297, 13784, 10137, 8405, 33583, 11230
Offset: 1

Views

Author

Felix Fröhlich, Feb 05 2016

Keywords

Comments

Lemma 7 from the Andrejic paper (p. 42): Prime p is a Wall-Sun-Sun prime iff L(p) == 1 (mod p^2). Therefore, a(n) = 1 iff A113650(n) = 0.

Crossrefs

Programs

  • Magma
    [Lucas(p) mod p^2: p in PrimesUpTo(250)]; // Bruno Berselli, Feb 09 2016
  • Mathematica
    Table[Mod[LucasL[Prime[n]], Prime[n]^2], {n, 60}] (* Vincenzo Librandi, Feb 09 2016 *)
  • PARI
    a000032(n) = fibonacci(n+1) + fibonacci(n-1)
    a(n) = my(p=prime(n)); lift(Mod(a000032(p), p^2))
    

Formula

a(n) = A180363(n) mod A001248(n). - Michel Marcus, Feb 09 2016

A160909 Row sums of triangle defined in A096539.

Original entry on oeis.org

2, 3, 10, 28, 198, 520, 3570, 9348, 64078, 1149850, 3010348, 54018520, 370248450, 969323028, 6643838878, 119218851370, 2139295485798, 5600748293800, 100501350283428, 688846502588398, 1803423556807920, 32361122672259148
Offset: 1

Views

Author

Klaus Brockhaus, May 29 2009

Keywords

Crossrefs

Programs

  • Magma
    [ &+[ Binomial(n-k, k)+Binomial(n-k-1, k-1): k in [1..n div 2] ]: n in [1..80] | IsPrime(n) ];

Formula

a(n) = A180363(n) - 1. - Jon Maiga, Jul 24 2019

A180367 a(n) = Lucas(prime(n+1)) - prime(Lucas(n)), for Lucas numbers beginning at 2.

Original entry on oeis.org

0, 2, 6, 22, 182, 490, 3510, 9240, 63868, 1149468, 3009672, 54017304, 370246314, 969319296, 6643832358, 119218840092, 2139295466336, 5600748260454, 100501350226466, 688846502491240, 1803423556642478, 32361122671978600, 221806434537503870, 3980154972736116440
Offset: 0

Views

Author

Jonathan Vos Post, Aug 31 2010

Keywords

Comments

Commutator of Primes and Lucas numbers. Some subtlety in indexing -- should we start with 0th Lucas number is 2, and 0th prime is 1? As shown here, I use "first" to mean the initial value as shown in P(n) and L(n), even though their indexing differs. This is to A093062 Fibonacci(prime(i))-prime(Fibonacci(i)) as Fibonacci is to Lucas.

Examples

			a(0) = 0 because the 1st prime is 2, and the third Lucas number is A000032(2) = 3; while the 1st Lucas number is 2, and the 2nd prime is 3; with 3-3=0.
a(1) = 2 because the 2nd prime is 3, and A000032(3) = 4; while the 2nd Lucas number is 1, and the first2 prime is 2; with 4-2=2.
a(2) = 6 because the 3rd prime is 5, and the 6th Lucas number (counting "2" as first) is A000032(5) = 11; while the 3rd Lucas number is 3, and the 3rd prime is 5; with 11-5=6.
a(3) = 29 - 7 = 22. a(4) = 199 - 17 = 182.
		

Crossrefs

Programs

Formula

a(n) = L(prime(n+1)) - prime(L(n)) = A000032(A000040(n+1)) - A000040(A000032(n)) = A180363(n+1) - A094894(n).

Extensions

Some indices corrected, 3 values corrected, and formulas signs swapped by R. J. Mathar, Sep 01 2010

A279482 Sum of the first n Lucas numbers whose indices are prime.

Original entry on oeis.org

3, 7, 18, 47, 246, 767, 4338, 13687, 77766, 1227617, 4237966, 58256487, 428504938, 1397827967, 8041666846, 127260518217, 2266556004016, 7867304297817, 108368654581246, 797215157169645, 2600638713977566, 34961761386236715, 256768195924215394
Offset: 1

Views

Author

Vincenzo Librandi, Dec 13 2016

Keywords

Comments

Partial sums of A180363.

Crossrefs

Programs

  • Magma
    [&+[Lucas(NthPrime(i)): i in [1..n]]: n in [1..30]];
  • Mathematica
    Accumulate[LucasL[Prime[Range[25]]]]

Formula

From Jon E. Schoenfield, Dec 18 2016: (Start)
a(n) = Sum_{i=1..n} A180363(i).
a(n) = Sum_{i=1..n} A000032(A000040(i)). (End)
Showing 1-7 of 7 results.