A361839
Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - 9*x*(1 + x)^k)^(1/3).
Original entry on oeis.org
1, 1, 3, 1, 3, 18, 1, 3, 21, 126, 1, 3, 24, 162, 945, 1, 3, 27, 201, 1341, 7371, 1, 3, 30, 243, 1809, 11529, 58968, 1, 3, 33, 288, 2352, 16893, 101619, 480168, 1, 3, 36, 336, 2973, 23607, 161676, 911466, 3961386, 1, 3, 39, 387, 3675, 31818, 242757, 1574289, 8281737, 33011550
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 3, 3, 3, 3, 3, ...
18, 21, 24, 27, 30, 33, ...
126, 162, 201, 243, 288, 336, ...
945, 1341, 1809, 2352, 2973, 3675, ...
7371, 11529, 16893, 23607, 31818, 41676, ...
-
T(n,k) = sum(j=0, n, (-9)^j*binomial(-1/3, j)*binomial(k*j, n-j));
A180399
Expansion of (1/3)*(1 - (1-9*x-9*x^2)^(1/3)).
Original entry on oeis.org
0, 1, 4, 21, 138, 999, 7683, 61542, 507663, 4281849, 36748998, 319845591, 2816007714, 25032803841, 224355173193, 2024955168606, 18388543939947, 167882583075453, 1540000362501702, 14186252492098011, 131176523761136568, 1217094112710349731, 11327464549934673309
Offset: 0
The Maclaurin series begins with x + 4x^2 + 21x^3.
-
CoefficientList[Series[1/3*(1-(1-9*x-9*x^2)^(1/3)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
-
x='x+O('x^66); concat([0],Vec(1/3*(1-(1-9*x-9*x^2)^(1/3)))) \\ Joerg Arndt, Jun 01 2013
A361881
Expansion of 1/(1 - 9*x/(1 + x))^(1/3).
Original entry on oeis.org
1, 3, 15, 93, 618, 4278, 30390, 219810, 1611105, 11929395, 89045079, 669018837, 5053759440, 38350056072, 292147584072, 2233020788184, 17117923408746, 131560216858110, 1013413369611606, 7822237588031586, 60487791859818348, 468511159492134516
Offset: 0
-
a := n -> if n = 0 then 1 else (-1)^(1-n)*3*hypergeom([1 - n, 4/3], [2], 9) fi:
seq(simplify(a(n)), n = 0..21); # Peter Luschny, Mar 30 2023
-
CoefficientList[Series[1/CubeRoot[(1-9x/(1+x))],{x,0,30}],x] (* Harvey P. Dale, Apr 15 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(1/(1-9*x/(1+x))^(1/3))
A361882
Expansion of 1/(1 - 9*x/(1 + x)^2)^(1/3).
Original entry on oeis.org
1, 3, 12, 63, 357, 2112, 12834, 79446, 498504, 3160566, 20202882, 129998400, 841084065, 5466859635, 35672889180, 233564188167, 1533744021741, 10097724827904, 66633102118296, 440600483618184, 2918753549183712, 19367330685385032, 128704927930928088
Offset: 0
-
a := n -> if n = 0 then 1 else (-1)^(n - 1)*3*n*hypergeom([1 - n, 1 + n, 4/3], [3/2, 2], 9/4) fi: seq(simplify(a(n)), n = 0..22); # Peter Luschny, Mar 30 2023
-
my(N=30, x='x+O('x^N)); Vec(1/(1-9*x/(1+x)^2)^(1/3))
A376568
Expansion of 1/(1 - 9*x*(1 + x))^(2/3).
Original entry on oeis.org
1, 6, 51, 450, 4095, 37908, 354978, 3351348, 31833945, 303822090, 2910657321, 27970777926, 269484894081, 2602002636540, 25170322256010, 243876058527132, 2366251795228437, 22987502934573762, 223563791480714685, 2176402892261301990, 21206170582394740371
Offset: 0
-
a(n) = sum(k=0, n, (-9)^k*binomial(-2/3, k)*binomial(k, n-k));
A377260
Expansion of 1/(1 - 9*x*(1 + x))^(4/3).
Original entry on oeis.org
1, 12, 138, 1512, 16191, 170856, 1785042, 18514548, 190978047, 1961435736, 20074741596, 204870399552, 2085761241018, 21191569851312, 214930928188116, 2176565295933000, 22012171108148025, 222351327936731700, 2243667436429422150, 22618648367553735000, 227826739721910301245
Offset: 0
-
a(n) = sum(k=0, n, (-9)^k*binomial(-4/3, k)*binomial(k, n-k));
A377261
Expansion of 1/(1 - 9*x*(1 + x))^(5/3).
Original entry on oeis.org
1, 15, 195, 2340, 26910, 301158, 3307590, 35830080, 384072975, 4082949585, 43113860361, 452742067440, 4732188244290, 49266375442110, 511157395433610, 5287689996408612, 54555878321808435, 561579617798527185, 5768783256563735265, 59149668761521664040, 605472238745163334116
Offset: 0
-
a(n) = sum(k=0, n, (-9)^k*binomial(-5/3, k)*binomial(k, n-k));
A372087
G.f. A(x) satisfies A(x) = 1/( 1 - 9*x*(1 + x)*A(x) )^(1/3).
Original entry on oeis.org
1, 3, 30, 369, 5130, 76626, 1200816, 19475829, 324140886, 5504511654, 94998663000, 1661370690546, 29377608173460, 524366947411668, 9435112261205328, 170958245619049173, 3116653690408787070, 57125853834377116014, 1052116816793294021688
Offset: 0
-
a(n) = sum(k=0, n, 9^k*binomial(4*k/3-2/3, k)*binomial(k, n-k)/(k+1));
A372039
Expansion of ( 1 + 9*x*(1 + x) )^(1/3).
Original entry on oeis.org
1, 3, -6, 27, -144, 837, -5139, 32778, -215001, 1440747, -9818820, 67834665, -473945580, 3342743235, -23766448545, 170148578130, -1225477405485, 8873126329095, -64547392633740, 471509782020405, -3457212506428230, 25434642838306185, -187694935991201745
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec((1+9*x*(1+x))^(1/3))
-
a(n) = sum(k=0, n, 9^k*binomial(1/3, k)*binomial(k, n-k));
Showing 1-9 of 9 results.