A180450 Primes of the form floor( (k^sqrt(2) + k)/sqrt(2) ).
3, 5, 7, 13, 19, 43, 67, 71, 89, 103, 107, 127, 137, 163, 191, 311, 317, 337, 383, 397, 431, 547, 569, 577, 599, 607, 653, 661, 677, 701, 709, 733, 757, 823, 857, 977, 1021, 1039, 1129, 1193, 1249, 1277, 1381, 1459, 1699, 1709, 1823, 1949, 2099, 2131, 2153, 2521, 2647
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(isprime,[seq(floor((n^sqrt(2)+n)/sqrt(2)),n=1..350)]); # Muniru A Asiru, Sep 29 2018
-
Mathematica
Select[With[{b = Sqrt[2]}, Table[Floor[(n^b + n)/b], {n, 500}]], PrimeQ] (* G. C. Greubel, Sep 29 2018 *)
-
PARI
for(n=1, 148438, if(ispseudoprime(t=floor((n^sqrt(2)+n)/sqrt(2))), print1(t", "))); v \\ Charles R Greathouse IV, Feb 18 2011
Extensions
Formula replaced by a comment - R. J. Mathar, Sep 09 2010
Comments