cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180450 Primes of the form floor( (k^sqrt(2) + k)/sqrt(2) ).

Original entry on oeis.org

3, 5, 7, 13, 19, 43, 67, 71, 89, 103, 107, 127, 137, 163, 191, 311, 317, 337, 383, 397, 431, 547, 569, 577, 599, 607, 653, 661, 677, 701, 709, 733, 757, 823, 857, 977, 1021, 1039, 1129, 1193, 1249, 1277, 1381, 1459, 1699, 1709, 1823, 1949, 2099, 2131, 2153, 2521, 2647
Offset: 1

Views

Author

William A. Tedeschi, Sep 07 2010

Keywords

Comments

Intersection of A000040 with the sequence 1, 3, 5, 7, 10, 13, 16, 19, 22, 25, 28, 32, 35, ... defined by the floor function.

Programs

  • Maple
    select(isprime,[seq(floor((n^sqrt(2)+n)/sqrt(2)),n=1..350)]); # Muniru A Asiru, Sep 29 2018
  • Mathematica
    Select[With[{b = Sqrt[2]}, Table[Floor[(n^b + n)/b], {n, 500}]], PrimeQ] (* G. C. Greubel, Sep 29 2018 *)
  • PARI
    for(n=1, 148438, if(ispseudoprime(t=floor((n^sqrt(2)+n)/sqrt(2))), print1(t", "))); v \\ Charles R Greathouse IV, Feb 18 2011

Extensions

Formula replaced by a comment - R. J. Mathar, Sep 09 2010