A180602 a(n) = (2^(n+1) - 1)^n.
1, 3, 49, 3375, 923521, 992436543, 4195872914689, 70110209207109375, 4649081944211090042881, 1227102111503512992112190463, 1291749870339606615892191271170049, 5429914198235566686555216227881787109375
Offset: 0
Examples
E.g.f: A(x) = 1 + 3*x + 7^2*x^2/2! + 15^3*x^3/3! + 31^4*x^4/4! +... A(x) = exp(-x) + 2^2*exp(-2*x)*x + 2^6*exp(-4*x)*x^2/2! + 2^12*exp(-8*x)*x^3/3! +...
Crossrefs
Programs
-
Magma
[(2^(n+1)-1)^n : n in [0..11]]; // Arkadiusz Wesolowski, Aug 26 2013
-
Maple
A180602:=n->(2^(n+1) - 1)^n: seq(A180602(n), n=0..10); # Wesley Ivan Hurt, Oct 09 2014
-
Mathematica
Table[(2^(n + 1) - 1)^n, {n, 0, 10}] (* Wesley Ivan Hurt, Oct 09 2014 *)
-
PARI
{a(n)=n!*polcoeff(sum(k=0, n, 2^(k^2+k)*exp(-2^k*x+x*O(x^n))*x^k/k!), n)}
-
Python
def A180602(n): return ((1<
Chai Wah Wu, Sep 13 2024
Formula
E.g.f.: Sum_{n>=0} 2^(n^2+n) * exp(-2^n*x) * x^n/n!.
Extensions
Name changed by Arkadiusz Wesolowski, Aug 26 2013
Comments