A180735 Expansion of (1+x)*(1-x)/(1 - x + x^2 + x^3).
1, 1, -1, -3, -3, 1, 7, 9, 1, -15, -25, -11, 29, 65, 47, -47, -159, -159, 47, 365, 477, 65, -777, -1319, -607, 1489, 3415, 2533, -2371, -8319, -8481, 2209, 19009, 25281, 4063, -40227, -69571, -33407, 76391, 179369, 136385
Offset: 0
Examples
a(6) = 7 = (1, 1, 1, -1, -3, -3, 1) dot (-2, 0, 2, 0, -2, 0, 1) = (-2, 0, 2, 0, 6, 0, 1) = 7.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,-1,-1)
Programs
-
Mathematica
CoefficientList[Series[(1 + x)*(1 - x)/(1 - x + x^2 + x^3), {x, 0, 50}], x] (* G. C. Greubel, Feb 22 2017 *) LinearRecurrence[{1,-1,-1},{1,1,-1},50] (* Harvey P. Dale, Aug 10 2021 *)
-
PARI
x='x+O('x^50); Vec((1 + x)*(1 - x)/(1 - x + x^2 + x^3)) \\ G. C. Greubel, Feb 22 2017
Formula
INVERT transform of (1, 0, -2, 0, 2, 0, -2, 0, 2, 0, ...) = INVERT transform of (1 - 2x^2 + 2x^4 - 2x^6 + 2x^8 - ...).
a(n) = a(n-1) - a(n-2) - a(n-3), n > 3.
Comments