cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180870 D(n, x) is the Dirichlet kernel sin((n+1/2)x)/sin(x/2). The triangle gives in row n the coefficients of descending powers of x of the polynomial D(n, arccos(x)).

Original entry on oeis.org

1, 2, 1, 4, 2, -1, 8, 4, -4, -1, 16, 8, -12, -4, 1, 32, 16, -32, -12, 6, 1, 64, 32, -80, -32, 24, 6, -1, 128, 64, -192, -80, 80, 24, -8, -1, 256, 128, -448, -192, 240, 80, -40, -8, 1, 512, 256, -1024, -448, 672, 240, -160, -40, 10, 1
Offset: 0

Views

Author

Jonny Griffiths, Sep 21 2010

Keywords

Comments

D(n, arccos(x)) = U(n, x) + U(n-1, x) where U(n, x) are the Chebyshev polynomials of the second kind. These polynomials arise naturally in the investigation of the integer triples (p, q, (p*q + 1)/(p + q)).
Chebyshev polynomials of the fourth kind, usually denoted by W(n, x) (see, for example, Mason and Handscomb, Chapter 1, Definition 1.3). See A228565 for Chebyshev polynomials of the third kind. Cf. A157751. - Peter Bala, Jan 17 2014

Examples

			The triangle T(n,m) begins:
n\m    0   1     2     3    4   5    6    7   8  9  10 ...
0:     1
1:     2   1
2:     4   2    -1
3:     8   4    -4    -1
4:    16   8   -12    -4    1
5:    32  16   -32   -12    6   1
6:    64  32   -80   -32   24   6   -1
7:   128  64  -192   -80   80  24   -8   -1
8:   256 128  -448  -192  240  80  -40   -8   1
9:   512 256 -1024  -448  672 240 -160  -40  10  1
10: 1024 512 -2304 -1024 1792 672 -560 -160  60 10  -1
... reformatted - _Wolfdieter Lang_, Jul 26 2014
Recurrence: T(4,2) = (1 + 1)*T(3,2) - T(3,1) = 2*(-4) - 4 = -12. T(4,3) = 0*T(3,3) - (-1)*T(3,2) = T(3,2) = -4. - _Wolfdieter Lang_, Jul 30 2014
		

References

  • J. C. Mason and D. C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC 2002.

Crossrefs

Cf. A008312, A028297, A157751, A228565, A049310, A244419 (row reversed triangle).

Programs

  • Maple
    ogf := (1 + t)/(1 - 2*x*t + t^2):
    ser := simplify(series(ogf, t, 12)): tc := n -> coeff(ser, t, n):
    Trow := n -> local k; seq(coeff(tc(n), x, n-k), k = 0..n):
    seq(print(Trow(n)), n = 0..9);  # Peter Luschny, Oct 07 2024
  • PARI
    row(n) = {if (n==0, return([1])); f = 2*x+1; for (k = 2, n, for (i = 1, (k-1)\2 + 1, f += (-1)^(i+1)*(binomial(k-i, i-1)*(2*x)^(k-2*i+2) - 2*binomial(k-1-i, i-1)*(2*x)^(k-2*i)););); Vec(f);} \\ Michel Marcus, Jul 18 2014

Formula

From Peter Bala, Jan 17 2014: (Start)
O.g.f. (1 + t)/(1 - 2*x*t + t^2) = 1 + (2*x + 1)*t + (4*x^2 + 2*x - 1)*t^2 + ....
Recurrence equation: W(0,x) = 1, W(1,x) = 2*x + 1 and W(n,x) = 2*x*W(n-1,x) - W(n-2,x) for n >= 2.
In terms of U(n,x), the Chebyshev polynomials of the second kind, we have W(n,x) = U(2*n,u) with u = sqrt((1 + x)/2). Also binomial(2*n,n)*W(n,x) = 2^(2*n)*Jacobi_P(n,1/2,-1/2,x). (End)
Row sums: 2*n+1. - Michel Marcus, Jul 16 2014
T(n,m) = [x^(n-m)](U(n, x) + U(n-1, x)) = [x^(n-m)] S(2*n, sqrt(2*(1+x))), n >= m >= 0, with U(n, x) = S(n, 2*x). The coefficient triangle of the Chebyshev S-polynomials is given in A049310. See the Peter Bala comments above. - Wolfdieter Lang, Jul 26 2014
From Wolfdieter Lang, Jul 30 2014: (Start)
O.g.f. for the row polynomials R(n,x) = Sum_{m=0..n} T(n,m)*x^m, obtained from the one given by Peter Bala above by row reversion: (1 + x*t)/(1 - 2*t + (x*t)^2).
In analogy to A157751 one can derive a recurrence for the row polynomials R(n, x) = x^n*Dir(n,1/x) with Dir(n,x) = U(n,x) + U(n-1,x) using also negative arguments but only one recursive step: R(n,x) = (1+x)*R(n-1,-x) + R(n-1,x), n >= 1, R(0,x) = 1 (R(-1,x) = -1/x). Proof: derive the o.g.f. and compare it with the known one.
This entails the triangle recurrence T(n,m) = (1 + (-1)^m)* T(n-1,m) - (-1)^m*T(n-1,m-1), for n >= m >= 1 with T(n,m) = 0 if n < m and T(n,0) = 2^n. (End)

Extensions

Missing term in sequence corrected by Paul Curtz, Dec 31 2011
Edited (name reformulated, Wikipedia link added) by Wolfdieter Lang, Jul 26 2014