A180870 D(n, x) is the Dirichlet kernel sin((n+1/2)x)/sin(x/2). The triangle gives in row n the coefficients of descending powers of x of the polynomial D(n, arccos(x)).
1, 2, 1, 4, 2, -1, 8, 4, -4, -1, 16, 8, -12, -4, 1, 32, 16, -32, -12, 6, 1, 64, 32, -80, -32, 24, 6, -1, 128, 64, -192, -80, 80, 24, -8, -1, 256, 128, -448, -192, 240, 80, -40, -8, 1, 512, 256, -1024, -448, 672, 240, -160, -40, 10, 1
Offset: 0
Examples
The triangle T(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 2 1 2: 4 2 -1 3: 8 4 -4 -1 4: 16 8 -12 -4 1 5: 32 16 -32 -12 6 1 6: 64 32 -80 -32 24 6 -1 7: 128 64 -192 -80 80 24 -8 -1 8: 256 128 -448 -192 240 80 -40 -8 1 9: 512 256 -1024 -448 672 240 -160 -40 10 1 10: 1024 512 -2304 -1024 1792 672 -560 -160 60 10 -1 ... reformatted - _Wolfdieter Lang_, Jul 26 2014 Recurrence: T(4,2) = (1 + 1)*T(3,2) - T(3,1) = 2*(-4) - 4 = -12. T(4,3) = 0*T(3,3) - (-1)*T(3,2) = T(3,2) = -4. - _Wolfdieter Lang_, Jul 30 2014
References
- J. C. Mason and D. C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC 2002.
Links
- Paul Barry, On the Group of Almost-Riordan Arrays, arXiv preprint arXiv:1606.05077 [math.CO], 2016.
- Wikipedia, Dirichlet kernel.
Programs
-
Maple
ogf := (1 + t)/(1 - 2*x*t + t^2): ser := simplify(series(ogf, t, 12)): tc := n -> coeff(ser, t, n): Trow := n -> local k; seq(coeff(tc(n), x, n-k), k = 0..n): seq(print(Trow(n)), n = 0..9); # Peter Luschny, Oct 07 2024
-
PARI
row(n) = {if (n==0, return([1])); f = 2*x+1; for (k = 2, n, for (i = 1, (k-1)\2 + 1, f += (-1)^(i+1)*(binomial(k-i, i-1)*(2*x)^(k-2*i+2) - 2*binomial(k-1-i, i-1)*(2*x)^(k-2*i)););); Vec(f);} \\ Michel Marcus, Jul 18 2014
Formula
From Peter Bala, Jan 17 2014: (Start)
O.g.f. (1 + t)/(1 - 2*x*t + t^2) = 1 + (2*x + 1)*t + (4*x^2 + 2*x - 1)*t^2 + ....
Recurrence equation: W(0,x) = 1, W(1,x) = 2*x + 1 and W(n,x) = 2*x*W(n-1,x) - W(n-2,x) for n >= 2.
In terms of U(n,x), the Chebyshev polynomials of the second kind, we have W(n,x) = U(2*n,u) with u = sqrt((1 + x)/2). Also binomial(2*n,n)*W(n,x) = 2^(2*n)*Jacobi_P(n,1/2,-1/2,x). (End)
Row sums: 2*n+1. - Michel Marcus, Jul 16 2014
T(n,m) = [x^(n-m)](U(n, x) + U(n-1, x)) = [x^(n-m)] S(2*n, sqrt(2*(1+x))), n >= m >= 0, with U(n, x) = S(n, 2*x). The coefficient triangle of the Chebyshev S-polynomials is given in A049310. See the Peter Bala comments above. - Wolfdieter Lang, Jul 26 2014
From Wolfdieter Lang, Jul 30 2014: (Start)
O.g.f. for the row polynomials R(n,x) = Sum_{m=0..n} T(n,m)*x^m, obtained from the one given by Peter Bala above by row reversion: (1 + x*t)/(1 - 2*t + (x*t)^2).
In analogy to A157751 one can derive a recurrence for the row polynomials R(n, x) = x^n*Dir(n,1/x) with Dir(n,x) = U(n,x) + U(n-1,x) using also negative arguments but only one recursive step: R(n,x) = (1+x)*R(n-1,-x) + R(n-1,x), n >= 1, R(0,x) = 1 (R(-1,x) = -1/x). Proof: derive the o.g.f. and compare it with the known one.
This entails the triangle recurrence T(n,m) = (1 + (-1)^m)* T(n-1,m) - (-1)^m*T(n-1,m-1), for n >= m >= 1 with T(n,m) = 0 if n < m and T(n,0) = 2^n. (End)
Extensions
Missing term in sequence corrected by Paul Curtz, Dec 31 2011
Edited (name reformulated, Wikipedia link added) by Wolfdieter Lang, Jul 26 2014
Comments