cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A180943 Odd composite numbers m for which 12*|A000367((m+1)/2)|==(-1)^{(m-1)/ 2}* A002445((m+1)/2) (mod m).

Original entry on oeis.org

33, 169, 481, 561, 793, 805, 949, 1105, 1261, 1417, 1645, 1729, 2041, 2353, 2465, 2509, 2821, 2977, 3133, 3421, 3445, 3601, 4069, 4123, 4381, 4537, 4849, 5161, 5317, 5473, 5629, 5941, 6061, 6205, 6601, 7033, 7093, 7189, 7501, 7813, 7885, 7969, 8113
Offset: 1

Views

Author

Vladimir Shevelev, Sep 27 2010

Keywords

Comments

These are pseudoprimes in the sense that the congruence of the definition is valid if any odd prime is substituted for m.
Entries of the form m = 4*k+3 are apparently rare: 4123, 8911, ...
Computed to 50 terms by D. S. McNeil, Sep 05 2010.

Crossrefs

Programs

  • Maple
    A000367 := proc(n) numer(bernoulli(2*n)) ; end proc:
    A002445 := proc(n) denom(bernoulli(2*n)) ; end proc:
    isA180943 := proc(m) if type(m,'odd') and not isprime(m) then 12*abs(A000367((m+1)/2)) mod m = (-1)^((m-1)/2)*A002445((m+1)/2) mod m ; else false; end if; end proc:
    A180943 := proc(n) option remember; if n = 1 then 33; else for a from procname(n-1)+2 by 2 do if isA180943(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Oct 24 2010
  • Mathematica
    nb[n_] := Numerator[BernoulliB[2n]];
    db[n_] := Denominator[BernoulliB[2n]];
    okQ[m_] := CompositeQ[m] && Mod[12*Abs[nb[(m+1)/2]], m] == Mod[(-1)^((m-1)/2)*db[(m+1)/2], m];
    Select[Range[33, 9999, 2], okQ] (* Jean-François Alcover, Feb 28 2024 *)

Extensions

Comments rephrased and program added by R. J. Mathar, Oct 24 2010
Typo in data fixed by Jean-François Alcover, Feb 28 2024

A287934 Composite numbers n such that E(n+1)+1 is divisible by n, where E(n) is the n-th Euler number (A122045).

Original entry on oeis.org

289, 341, 561, 1105, 1369, 1387, 1729, 2465, 2821, 4097, 5365, 6179, 6601, 8911, 9105, 9537, 10585, 12673, 14433, 14531, 15457, 15841, 28033, 29341, 33901, 41041, 41905, 42141, 46657, 48705, 52633, 52741, 62745, 63253, 63973, 75361, 80185, 82621, 99937
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2017

Keywords

Comments

Kummer proved in 1851 that E(2k + p - 1) == E(2k) (mod p) for k > 0 and all odd primes p. This sequence consists of composite numbers for which the congruence, with k=1, also holds. In terms of A000364, the sequence consists of composite odd numbers n that divide A000364((n + 1)/2) + (-1)^((n + 1)/2).

References

  • Jozsef Sandor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 5, p. 556.

Crossrefs

Programs

  • Mathematica
    a={}; For[n = 1, n < 100000, n++; If[!PrimeQ[n] && Divisible[EulerE[n + 1] + 1, n], a=AppendTo[a,n]]];a
    Select[Range[100000],CompositeQ[#]&&Divisible[EulerE[#+1]+1,#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 03 2019 *)
  • PARI
    e(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1);
    isok(n) = (((e(n+1)+1) % n) == 0);
    lista(nn) = forcomposite(n=1, nn, if (isok(n), print1(n, ", "))); \\ Michel Marcus, Jun 10 2017
Showing 1-2 of 2 results.