cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180964 a(0)=1; for n>0, a(n) = 1 + 3*A117571(n-1).

Original entry on oeis.org

1, 4, 4, 10, 13, 13, 19, 22, 22, 28, 31, 31, 37, 40, 40, 46, 49, 49, 55, 58, 58, 64, 67, 67, 73, 76, 76, 82, 85, 85, 91, 94, 94, 100, 103, 103, 109, 112, 112, 118, 121, 121, 127, 130, 130, 136, 139, 139, 145, 148, 148, 154, 157, 157, 163, 166, 166, 172
Offset: 0

Views

Author

Bruno Berselli, Sep 28 2010 - Oct 01 2010

Keywords

Crossrefs

Cf. A061347.

Programs

  • Magma
    I:=[1, 4, 4, 10]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, Mar 26 2013
    
  • Maple
    m:=60; S:=series( (1+3*x+5*x^3)/((1-x)^2*(1+x+x^2)), x, m+1):
    seq(coeff(S, x, j), j=1..m); # G. C. Greubel, Apr 06 2021
  • Mathematica
    CoefficientList[Series[(1 +3x +5x^3)/((1-x)^2(1+x+x^2)), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{1,0,1,-1},{1,4,4,10},60] (* Harvey P. Dale, Aug 05 2020 *)
  • Sage
    [3*n +chebyshev_U(n, -1/2) +2*chebyshev_U(n-1, -1/2) for n in (0..60)] # G. C. Greubel, Apr 06 2021

Formula

G.f.: (1 +3*x +5*x^3)/((1-x)^2*(1+x+x^2)).
a(n) = a(n-1) +a(n-3) -a(n-4) for n>3.
a(n) = (n-1)*(n mod 3) +(n+1)*(n+1 mod 3) +n*(n+2 mod 3).
a(n) = 3*n +sqrt(3)*cos((4*n-3)*Pi/6) -sin((4*n-3)*Pi/6).
a(n) - a(n-1) = 3*A080425(n+1) for n>0.
From G. C. Greubel, Apr 06 2021: (Start)
a(n) = 3*n - 2*cos(2*Pi*(n+1)/3) = 3*n + A061347(n+1).
a(n) = 3*n + ChebyshevU(n, -1/2) + 2*ChebyshevU(n-1, -1/2). (End)