cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181134 Sum of 13th powers: a(n) = Sum_{j=0..n} j^13.

Original entry on oeis.org

0, 1, 8193, 1602516, 68711380, 1289414505, 14350108521, 111239118928, 660994932816, 3202860761145, 13202860761145, 47725572905076, 154718778284148, 457593884876401, 1251308658130545, 3197503726489920
Offset: 0

Views

Author

Bruno Berselli, Oct 05 2010 - Oct 18 2010

Keywords

Comments

This form of recurrence is a general property of the array in A103438 (sums of the first n-th powers).

Crossrefs

Cf. A010801.
Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), A123095 (m=11), A123094 (m=12), A181134 (m=13).

Programs

  • Magma
    [(&+[j^13: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 21 2021
    
  • Maple
    A181134 := proc(n) (bernoulli(14,n+1) - bernoulli(14))/14 ; end proc: seq(A181134(n), n=0..10); # R. J. Mathar, Oct 14 2010
  • Mathematica
    Accumulate[Range[0,20]^13] (* Harvey P. Dale, Oct 30 2017 *)
  • Python
    A181134_list, m = [0], [6227020800, -37362124800, 97037740800, -142702560000, 130456085760, -76592355840, 28805736960, -6711344640, 901020120, -60780720, 1569750, -8190, 1, 0 , 0]
    for _ in range(10**2):
        for i in range(14):
            m[i+1]+= m[i]
        A181134_list.append(m[-1]) # Chai Wah Wu, Nov 06 2014
    
  • Sage
    [(bernoulli_polynomial(n+1, 14) - bernoulli(14))/14  for n in (0..30)] # G. C. Greubel, Jul 21 2021

Formula

For n>0, a(n) = n*A123094(n) - Sum_{i=0..n-1} A123094(i), where Sum_{i=0..n-1} A123094(i) = A253712(n-1) = (n-1)*n^2*(n+1)*(30*n^10 - 425*n^8 + 2578*n^6 - 8147*n^4 + 12874*n^2 - 7601)/5460.
a(n) = a(-n-1) = (n*(n + 1))^2*(30*n^10 + 150*n^9 + 125*n^8 - 400*n^7 - 326*n^6 + 1052*n^5 + 367*n^4 - 1786*n^3 + 202*n^2 + 1382*n - 691)/420.
G.f.: see comment of Vladeta Jovovic in A000538.
a(n) = -Sum_{j=1..13} j*Stirling1(n+1,n+1-j)*Stirling2(n+13-j,n). - Mircea Merca, Jan 25 2014