cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181286 Partial sums of floor(n^2/3) (A000212).

Original entry on oeis.org

0, 0, 1, 4, 9, 17, 29, 45, 66, 93, 126, 166, 214, 270, 335, 410, 495, 591, 699, 819, 952, 1099, 1260, 1436, 1628, 1836, 2061, 2304, 2565, 2845, 3145, 3465, 3806, 4169, 4554, 4962, 5394, 5850, 6331, 6838, 7371, 7931, 8519, 9135, 9780, 10455, 11160, 11896
Offset: 0

Views

Author

Mircea Merca, Oct 12 2010

Keywords

Comments

Column sums of:
1 4 9 16 25 36 49...
1 4 9 16...
1...
....................
--------------------
1 4 9 17 29 45 66...

Examples

			a(5) = 17 = 0 + 0 + 1 + 3 + 5 + 8.
		

Crossrefs

Cf. A000212.

Programs

  • Magma
    [Round((2*n^(3)+3*n^(2)-3*n)/(18)): n in [0..50]]; // Vincenzo Librandi, Jun 21 2011
  • Maple
    a(n):=round((2*n^(3)+3*n^(2)-3*n)/(18))
  • Mathematica
    Accumulate[Floor[Range[0,80]^2/3]] (* Harvey P. Dale, Jun 14 2015 *)

Formula

a(n) = Sum_{k=0..n} floor(k^2/3).
a(n) = round((2*n^3 + 3*n^2 - 3*n)/18).
a(n) = round((2*n^3 + 3*n^2 - 3*n - 2)/18).
a(n) = floor((2*n^3 + 3*n^2 - 3*n)/18).
a(n) = ceiling((2*n^3 + 3*n^2 - 3*n - 4)/18).
a(n) = a(n-3) + (n-1)^2, n > 2.
G.f.: x^2*(1+x)/((1-x)^3*(1-x^3)).
G.f.: x^2*(1+x)/((1+x+x^2)*(1-x)^4). - L. Edson Jeffery, Jan 16 2014
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6), n >= 6. - L. Edson Jeffery, Jan 16 2014
E.g.f.: exp(-x/2)*(3*exp(3*x/2)*(-2 + x*(2 + x*(9 + 2*x))) + 6*cos(sqrt(3)*x/2) + 2*sqrt(3)*sin(sqrt(3)*x/2))/54. - Stefano Spezia, Oct 24 2022