cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181475 a(n) = 3*n^4 + 6*n^3 - 3*n + 1.

Original entry on oeis.org

1, 7, 91, 397, 1141, 2611, 5167, 9241, 15337, 24031, 35971, 51877, 72541, 98827, 131671, 172081, 221137, 279991, 349867, 432061, 527941, 638947, 766591, 912457, 1078201, 1265551, 1476307, 1712341, 1975597, 2268091, 2591911, 2949217, 3342241, 3773287, 4244731
Offset: 0

Views

Author

Bruno Berselli, Oct 25 2010 - Oct 29 2010

Keywords

Comments

If gcd(n,7) = gcd(n+1,7) = gcd(2*n+1,7) = 1 then a(n) == 0 (mod 7) (E. Picutti, see References).

References

  • Ettore Picutti, Sul numero e la sua storia, Feltrinelli Economica, 1977, p. 208.

Crossrefs

Subsequence of A003215.

Programs

  • Magma
    [3*n^4+6*n^3-3*n+1: n in [0..31]];
  • Mathematica
    Table[3 n^4 + 6 n^3 - 3 n + 1, {n, 0, 40}] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,7,91,397,1141},40] (* Harvey P. Dale, Jul 12 2022 *)

Formula

G.f.: (1 + 2*x + 66*x^2 + 2*x^3 + x^4)/(1-x)^5.
a(n) = a(-n-1) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 6*12.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6*A008594(n-1).
a(n) = 2*a(n-1) - a(n-2) + 6*A003154(n).
a(n) = a(n-1) + 6*A007588(n).
a(n) = 1 + 6*A062392(n).
a(n) = 7*A000540(n)/A000330(n) = A154105(A000096(n-1)) for n > 0.
Sum_{i=0..n} a(i) = (3*n^5 + 15*n^4 + 20*n^3 - 3*n + 5)/5.
a(n) = 7*(3*n^2 + 3*n - 1)*(Sum_{k=1..n} k^6)/(5*Sum_{k=1..n} k^4), n > 0. - Gary Detlefs, Oct 18 2011

Extensions

Formula, program and crossref added by Bruno Berselli, Aug 22 2011