cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181510 Number of permutations of the multiset {1,1,2,2,3,3,...,n+1,n+1} avoiding the permutation patterns {132, 231, 2134}.

Original entry on oeis.org

6, 18, 34, 54, 78, 106, 138, 174, 214, 258, 306, 358, 414, 474, 538, 606, 678, 754, 834, 918, 1006, 1098, 1194, 1294, 1398, 1506, 1618, 1734, 1854, 1978, 2106, 2238, 2374, 2514, 2658, 2806, 2958, 3114, 3274, 3438, 3606, 3778, 3954, 4134, 4318, 4506, 4698, 4894
Offset: 1

Views

Author

Lara Pudwell, Oct 25 2010

Keywords

Comments

a(n) is also the surface ares of the n-th solid in the following recursive construction:
The first solid is a unit cube (hence a(1)=6).
To form the n-th solid from the (n-1)st solid, construct a row of 2n-1 cubes, then center the (n-1)st solid on top of this row. (For example, the second solid is a row of 3 unit cubes, with a single unit cube centered on top of the middle cube. This construction has surface area a(2)=18.)
The sequence provides all nonnegative integers m such that 2*m + 13 is a square. - Bruno Berselli, Mar 01 2013

Examples

			For n=1, the permutations of {1,1,2,2} avoiding the patterns {132, 231, 2134} are {1122, 1212, 1221, 2112, 2121, 2211}.
For n=2, the permutations of {1,1,2,2,3,3} avoiding the patterns {132, 231, 2134} are {112233, 121233, 122133, 211233, 212133, 221133, 311223, 312123, 312213, 321123, 321213, 322113, 331122, 331212, 331221, 332112, 332121, 332211}.
		

Crossrefs

Programs

Formula

a(n) = 2*n^2 + 6*n - 2.
From Bruno Berselli, Oct 29 2010: (Start)
G.f.: 2*x*(3-x^2)/(1-x)^3.
a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 0 for n > 3.
a(n) = 2*A014209(n) = 2*A082111(n-1) + 4 = A051936(2*n+2) + n + 4. (End)
Sum_{n>=1} 1/a(n) = 2/3 + Pi*tan(sqrt(13)*Pi/2)/(2*sqrt(13)). - Amiram Eldar, Dec 23 2022
E.g.f.: 2*(exp(x)*(x^2 + 4*x - 1) + 1). - Elmo R. Oliveira, Nov 17 2024