A181543 Triangle of cubed binomial coefficients, T(n,k) = C(n,k)^3, read by rows.
1, 1, 1, 1, 8, 1, 1, 27, 27, 1, 1, 64, 216, 64, 1, 1, 125, 1000, 1000, 125, 1, 1, 216, 3375, 8000, 3375, 216, 1, 1, 343, 9261, 42875, 42875, 9261, 343, 1, 1, 512, 21952, 175616, 343000, 175616, 21952, 512, 1, 1, 729, 46656, 592704, 2000376, 2000376, 592704, 46656, 729, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 8, 1; 1, 27, 27, 1; 1, 64, 216, 64, 1; 1, 125, 1000, 1000, 125, 1; 1, 216, 3375, 8000, 3375, 216, 1; 1, 343, 9261, 42875, 42875, 9261, 343, 1; 1, 512, 21952, 175616, 343000, 175616, 21952, 512, 1; 1, 729, 46656, 592704, 2000376, 2000376, 592704, 46656, 729, 1; ...
Links
- Indranil Ghosh, Rows 0..120 of triangle, flattened
- Jeffrey S. Geronimo, Hugo J. Woerdeman, and Chung Y. Wong, The autoregressive filter problem for multivariable degree one symmetric polynomials, arXiv:2101.00525 [math.CA], 2021.
Crossrefs
Programs
-
Maple
T:= (n, k)-> binomial(n, k)^3: seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jan 06 2021
-
Mathematica
Flatten[Table[Binomial[n,k]^3,{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 23 2011 *)
-
PARI
T(n,k)=binomial(n,k)^3 for(n=0,10,for(k=0,n,print1(T(n,k),", "));print())
-
PARI
T(n,k)=polcoeff(polcoeff(sum(m=0,n,(3*m)!/m!^3*x^(2*m)*y^m/(1-x-x*y+x*O(x^n))^(3*m+1)),n,x),k,y) for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Nov 04 2010
-
PARI
diag(expr, N=22, var=variables(expr)) = { my(a = vector(N)); for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N)); for (n = 1, N, a[n] = expr; for (k = 1, #var, a[n] = polcoeff(a[n], n-1))); return(a); }; x='x; y='y; z='z; t='t; concat(apply(Vec, diag(1/(1 + y + z + x*y + y*z + t*x*z + (t+1)*x*y*z), 10, [x, y, z]))) \\ Gheorghe Coserea, Jul 01 2018
Formula
Row sums equal A000172, the Franel numbers.
Central terms are A002897(n) = C(2n,n)^3.
Antidiagonal sums equal A181545;
The g.f. of the antidiagonal sums is Sum_{n>=0} (3n)!/(n!)^3 * x^(3n)/(1-x-x^2)^(3n+1).
G.f. for column k: [Sum_{j=0..2k} A181544(k,j)*x^j]/(1-x)^(3k+1), where the row sums of A181544 equals De Bruijn's s(3,n) = (3n)!/(n!)^3.
G.f.: A(x,y) = Sum_{n>=0} (3n)!/n!^3 * x^(2n)*y^n/(1-x-x*y)^(3n+1). - Paul D. Hanna, Nov 04 2010
Comments