cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181543 Triangle of cubed binomial coefficients, T(n,k) = C(n,k)^3, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 27, 27, 1, 1, 64, 216, 64, 1, 1, 125, 1000, 1000, 125, 1, 1, 216, 3375, 8000, 3375, 216, 1, 1, 343, 9261, 42875, 42875, 9261, 343, 1, 1, 512, 21952, 175616, 343000, 175616, 21952, 512, 1, 1, 729, 46656, 592704, 2000376, 2000376, 592704, 46656, 729, 1
Offset: 0

Views

Author

Paul D. Hanna, Oct 30 2010

Keywords

Comments

Diagonal of rational function R(x,y,z,t) = 1/(1 + y + z + x*y + y*z + t*x*z + (t+1)*x*y*z) with respect to x, y, z, i.e., T(n,k) = [(xyz)^n*t^k] R(x,y,z,t). - Gheorghe Coserea, Jul 01 2018

Examples

			Triangle begins:
  1;
  1,   1;
  1,   8,     1;
  1,  27,    27,      1;
  1,  64,   216,     64,       1;
  1, 125,  1000,   1000,     125,       1;
  1, 216,  3375,   8000,    3375,     216,      1;
  1, 343,  9261,  42875,   42875,    9261,    343,     1;
  1, 512, 21952, 175616,  343000,  175616,  21952,   512,   1;
  1, 729, 46656, 592704, 2000376, 2000376, 592704, 46656, 729, 1;
  ...
		

Crossrefs

Cf. A000172 (row sums), A181545 (antidiagonal sums), A002897, A181544, A248658.
Variants: A008459, A007318.

Programs

  • Maple
    T:= (n, k)-> binomial(n, k)^3:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jan 06 2021
  • Mathematica
    Flatten[Table[Binomial[n,k]^3,{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 23 2011 *)
  • PARI
    T(n,k)=binomial(n,k)^3
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print())
    
  • PARI
    T(n,k)=polcoeff(polcoeff(sum(m=0,n,(3*m)!/m!^3*x^(2*m)*y^m/(1-x-x*y+x*O(x^n))^(3*m+1)),n,x),k,y)
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Nov 04 2010
    
  • PARI
    diag(expr, N=22, var=variables(expr)) = {
      my(a = vector(N));
      for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
      for (n = 1, N, a[n] = expr;
        for (k = 1, #var, a[n] = polcoeff(a[n], n-1)));
      return(a);
    };
    x='x; y='y; z='z; t='t;
    concat(apply(Vec, diag(1/(1 + y + z + x*y + y*z + t*x*z + (t+1)*x*y*z), 10, [x, y, z]))) \\ Gheorghe Coserea, Jul 01 2018

Formula

Row sums equal A000172, the Franel numbers.
Central terms are A002897(n) = C(2n,n)^3.
Antidiagonal sums equal A181545;
The g.f. of the antidiagonal sums is Sum_{n>=0} (3n)!/(n!)^3 * x^(3n)/(1-x-x^2)^(3n+1).
G.f. for column k: [Sum_{j=0..2k} A181544(k,j)*x^j]/(1-x)^(3k+1), where the row sums of A181544 equals De Bruijn's s(3,n) = (3n)!/(n!)^3.
G.f.: A(x,y) = Sum_{n>=0} (3n)!/n!^3 * x^(2n)*y^n/(1-x-x*y)^(3n+1). - Paul D. Hanna, Nov 04 2010