cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181617 Molecular topological indices of the complete graph K_n.

Original entry on oeis.org

0, 4, 24, 72, 160, 300, 504, 784, 1152, 1620, 2200, 2904, 3744, 4732, 5880, 7200, 8704, 10404, 12312, 14440, 16800, 19404, 22264, 25392, 28800, 32500, 36504, 40824, 45472, 50460, 55800, 61504, 67584, 74052, 80920, 88200, 95904, 104044, 112632, 121680, 131200
Offset: 1

Views

Author

Eric W. Weisstein, Jul 10 2011

Keywords

Comments

a(n) = the area of a trapezoid with vertices at (n-1,n), (n,n-1), ((n-1)^2,n^2), and (n^2,(n-1)^2). - J. M. Bergot, Mar 23 2014
For n > 3, also the detour index of the (n-1)-helm graph. - Eric W. Weisstein, Dec 16 2017
a(n-3) is the maximum sigma irregularity over all maximal 2-degenerate graphs with n vertices. The extremal graphs are 2-stars (K_2 joined to n-2 independent vertices). (The sigma irregularity of a graph is the sum of the squares of the differences between the degrees over all edges of the graph.) - Allan Bickle, Jun 14 2023

Crossrefs

Cf. A002411.
Cf. A011379, A181617, A270205 (sigma irregularities of maximal k-degenerate graphs).

Programs

  • Magma
    [2*n*(n-1)^2: n in [1..50]]; // Vincenzo Librandi, Mar 24 2014
  • Mathematica
    CoefficientList[Series[4 x (1 + 2 x)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 24 2014 *)
    LinearRecurrence[{4, -6, 4, -1}, {0, 4, 24, 72}, 50] (* Harvey P. Dale, Jun 16 2016 *)
    Table[2 n (n - 1)^2, {n, 20}] (* Eric W. Weisstein, Dec 16 2017 *)
  • PARI
    a(n) = 2*n*(n-1)^2; \\ Joerg Arndt, Mar 24 2014
    

Formula

a(n) = 2*n*(n-1)^2.
a(n) = 4*A002411(n).
G.f.: 4*x^2*(1+2*x)/(1-x)^4. - Colin Barker, Nov 04 2012
From Amiram Eldar, Jan 22 2023: (Start)
Sum_{n>=2} 1/a(n) = Pi^2/12 - 1/2.
Sum_{n>=2} (-1)^n/a(n) = Pi^2/24 - log(2) + 1/2. (End)

Extensions

More terms from Joerg Arndt, Mar 24 2014