A181617 Molecular topological indices of the complete graph K_n.
0, 4, 24, 72, 160, 300, 504, 784, 1152, 1620, 2200, 2904, 3744, 4732, 5880, 7200, 8704, 10404, 12312, 14440, 16800, 19404, 22264, 25392, 28800, 32500, 36504, 40824, 45472, 50460, 55800, 61504, 67584, 74052, 80920, 88200, 95904, 104044, 112632, 121680, 131200
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Eric Weisstein's World of Mathematics, Complete Graph.
- Eric Weisstein's World of Mathematics, Detour Index.
- Eric Weisstein's World of Mathematics, Helm Graph.
- Eric Weisstein's World of Mathematics, Molecular Topological Index.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[2*n*(n-1)^2: n in [1..50]]; // Vincenzo Librandi, Mar 24 2014
-
Mathematica
CoefficientList[Series[4 x (1 + 2 x)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 24 2014 *) LinearRecurrence[{4, -6, 4, -1}, {0, 4, 24, 72}, 50] (* Harvey P. Dale, Jun 16 2016 *) Table[2 n (n - 1)^2, {n, 20}] (* Eric W. Weisstein, Dec 16 2017 *)
-
PARI
a(n) = 2*n*(n-1)^2; \\ Joerg Arndt, Mar 24 2014
Formula
a(n) = 2*n*(n-1)^2.
a(n) = 4*A002411(n).
G.f.: 4*x^2*(1+2*x)/(1-x)^4. - Colin Barker, Nov 04 2012
From Amiram Eldar, Jan 22 2023: (Start)
Sum_{n>=2} 1/a(n) = Pi^2/12 - 1/2.
Sum_{n>=2} (-1)^n/a(n) = Pi^2/24 - log(2) + 1/2. (End)
Extensions
More terms from Joerg Arndt, Mar 24 2014
Comments