cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181779 Duplicate of A092134.

Original entry on oeis.org

2, 5, 1, 1, 1, 1, 10, 1, 1, 2, 8, 7643, 4, 1, 51, 2, 2, 8, 5, 2, 1, 6, 5, 4, 1, 42, 2, 1, 1, 1, 1, 1, 1, 1, 6, 2, 6, 2, 12, 2, 1, 6, 3, 13, 11, 2, 9, 2, 1, 4, 1, 2, 1, 6, 3, 1, 1, 1, 11, 3, 1, 2, 1, 1, 2, 3, 3, 1, 2, 3, 1, 56, 1, 24, 6, 20, 3, 27, 2, 1, 2, 1, 2, 5, 2, 1, 1, 14, 1, 91, 1, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 16, 21
Offset: 0

Views

Author

Keywords

Comments

Previous name was: Continued fraction for phi^phi.

Examples

			2.178457567937599147372545... = 2 + 1/(5 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...))))).
		

References

  • H. Walser, The Golden Section, Math. Assoc. of Amer, Washington DC 2001.
  • C. J. Willard, Le nombre d'or, Magnard, Paris 1987.

Crossrefs

Cf. A144749 (decimal expansion).

Programs

  • Maple
    with(numtheory):Digits:= 300: x:=(sqrt(5)+1)/2:convert(evalf(x^x), confrac);
  • Mathematica
    ContinuedFraction[GoldenRatio^ GoldenRatio, 100 ]
  • PARI
    phi=(1+sqrt(5))/2;contfrac(phi^phi) \\ Charles R Greathouse IV, Jul 29 2011

Extensions

Offset changed and missing term inserted by Andrew Howroyd, Jul 08 2024