cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049439 Numbers k such that the number of odd divisors of k is an odd divisor of k.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 128, 144, 225, 256, 288, 441, 450, 512, 576, 625, 882, 900, 1024, 1089, 1152, 1250, 1521, 1764, 1800, 2025, 2048, 2178, 2304, 2500, 2601, 3042, 3249, 3528, 3600, 4050, 4096, 4356, 4608, 4761, 5000, 5202, 5625, 6084
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk)

Keywords

Comments

Invented by the HR concept formation program.
Sequence consists of all numbers of the form A000079(k)*A036896(m). - Matthew Vandermast, Nov 14 2010

Examples

			There are 3 odd divisors of 18, namely 1,3 and 9 and 3 itself is an odd divisor of 18.
		

Crossrefs

Contains A000079 and A036896.
Subsequence of A028982. Includes A120349, A120358, A120359, A120361, A181795. See also A181794.

Programs

  • Haskell
    a049439 n = a049439_list !! (n-1)
    a049439_list = filter (\x -> ((length $ oddDivs x) `elem` oddDivs x)) [1..]
       where oddDivs n = [d | d <- [1,3..n], mod n d == 0]
    -- Reinhard Zumkeller, Aug 17 2011
    
  • Mathematica
    ok[n_] := (d = Length @ Select[Divisors[n], OddQ] ;
      IntegerQ[n/d] && OddQ[d]); Select[Range[6100], ok]
    (* Jean-François Alcover, Apr 22 2011 *)
    odQ[n_]:=Module[{ods=Select[Divisors[n],OddQ]},MemberQ[ods,Length[ ods]]]; Select[Range[7000],odQ] (* Harvey P. Dale, Dec 18 2011 *)
    Select[Range[6000], OddQ[(d = DivisorSigma[0, #/2^IntegerExponent[#, 2]])] && Divisible[#, d] &] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    is(n)=my(d=numdiv(n>>valuation(n,2))); d%2 && n%d==0 \\ Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = A000079(k)*A016754(m) for appropriate k, m. - Reinhard Zumkeller, Jun 05 2008

Extensions

Example corrected by Harvey P. Dale, Jul 14 2011

A181795 Numbers k such that the number of odd divisors of k is an odd divisor of k, and the number of even divisors of k is an even divisor of k.

Original entry on oeis.org

4, 16, 36, 144, 256, 576, 900, 1764, 2304, 2500, 3600, 4356, 6084, 7056, 8100, 10000, 10404, 12996, 17424, 19044, 22500, 24336, 26244, 30276, 32400, 34596, 36864, 41616, 49284, 51984, 57600, 60516, 65536, 66564, 76176, 79524, 90000
Offset: 1

Views

Author

Matthew Vandermast, Nov 14 2010

Keywords

Comments

All members are even squares (A016742). Intersection of A049439 and A181794.
Includes all numbers of the form A001146(m)*A036896(n) for m>1.

Examples

			a(3)=36 has 3 odd divisors (1, 3, and 9) and 6 even divisors (2, 4, 6, 12, 18, and 36). 3 and 6 are odd and even respectively, and both are divisors of 36.
		

Crossrefs

Subsequence of A000290, A016742, A120351.
See also A033950,A181687. For refactorable members of this sequence, see A120349.

Programs

  • Mathematica
    ndQ[n_]:=Module[{d=Divisors[n],od,ev},od=Count[d,?OddQ];ev=Count[ d, ?EvenQ]; ev!=0&&OddQ[od]&&EvenQ[ev]&&Divisible[n,od]&&Divisible[ n, ev]]; Select[Range[100000],ndQ] (* Harvey P. Dale, Feb 24 2016 *)
  • PARI
    isok(n) = my(nod = numdiv(n>>valuation(n, 2)), noe = if (n%2, 0, numdiv(n/2))); (nod % 2) && nod && !(n % nod) && !(noe % 2) && noe && !(n % noe); \\ Michel Marcus, Jan 14 2014

Extensions

More terms from Nathaniel Johnston, Nov 17 2010
Showing 1-2 of 2 results.