cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A181803 Triangle read by rows: T(n,k) is the k-th smallest divisor d of n such that n sets a record for the number of its divisors that are multiples of d.

Original entry on oeis.org

1, 1, 2, 3, 1, 2, 4, 5, 1, 3, 6, 7, 2, 4, 8, 9, 5, 10, 11, 1, 2, 3, 6, 12, 13, 7, 14, 15, 4, 8, 16, 17, 3, 9, 18, 19, 5, 10, 20, 21, 11, 22, 23, 1, 2, 4, 6, 12, 24, 25, 13, 26, 27, 7, 14, 28, 29, 5, 15, 30, 31, 8, 16, 32, 33, 17, 34, 35, 1, 3, 6, 9, 18, 36, 37, 19, 38, 39, 10, 20, 40, 41, 7, 21, 42
Offset: 1

Views

Author

Matthew Vandermast, Nov 27 2010

Keywords

Comments

In other words, row n contains a particular divisor d of n iff more multiples of d appear among the divisors of n than appear among the divisors of any smaller positive integer. Cf. A181808.
Row n contains A181801(n) numbers, the largest of which is n. T(n,k) * A180802(n, A181801(n)-k+1) = n.
For all positive integer values (j,k) such that jk = n, the number of divisors of n that are multiples of j equals A000005(k). Therefore, j appears in row n iff k=n/j is a member of A002182.

Examples

			First rows read: 1; 1,2; 3; 1,2,4; 5; 1,3,6; 7; 2,4,8; 9; 5,10; 11; 1,2,3,6,12;...
6 has four divisors (1, 2, 3 and 6). Of those divisors, 1, 3 and 6 appear in row 6.
a. The divisors of 6 include four multiples of 1 (1, 2, 3 and 6); two multiples of 3 (3 and 6), and one multiple of 6 (6). No positive integer smaller than 6 has more than three multiples of 1 among its divisors; hence, 1 appears in row 6. Also, no positive integer smaller than 6 has more than one multiple of 3 among its divisors, or has any multiple of 6 among its divisors. Hence, 3 and 6 both appear in row 6.
b. On the other hand, although 6 includes two multiples of 2 among its divisors (2 and 6), so does a smaller positive integer (4, whose even divisors are 2 and 4). Accordingly, 2 is not included in row 6.
The divisors of 6 that appear in row 6 are therefore 1, 3 and 6. Note that 1, 3 and 6 equal 6/6, 6/2 and 6/1 respectively, and all of the denominators in those fractions are highly composite numbers (A002182).
		

Crossrefs

For the highly composite divisors of n, see A181802. See also A181808, A181809, A181810.

Formula

T(n,k) = n/(A180802(n, A181801(n)-k+1)).

A181808 Numbers that set a record for number of even divisors: a(n) = 2*A002182(n).

Original entry on oeis.org

2, 4, 8, 12, 24, 48, 72, 96, 120, 240, 360, 480, 720, 1440, 1680, 2520, 3360, 5040, 10080, 15120, 20160, 30240, 40320, 50400, 55440, 90720, 100800, 110880, 166320, 221760, 332640, 443520, 554400, 665280, 997920, 1108800, 1330560, 1441440, 2162160, 2882880, 4324320
Offset: 1

Views

Author

Matthew Vandermast, Nov 27 2010

Keywords

Comments

In other words, a positive integer n appears in the sequence iff more even numbers divide n than divide any positive integer smaller than n.
For all positive integer values (j,k) such that jk = n, the number of divisors of n that are multiples of j equals A000005(k). Therefore, n sets a record for the number of its divisors that are multiples of j iff k=n/j is highly composite (A002182). Cf. A181803, A181809, A181810.

Examples

			a(4)=12 has exactly four even divisors (2, 4, 6 and 12).  (Note that these are precisely the numbers that are twice a divisor of A002182(4)=6; see row 6 of A027750.)  No positive integer smaller than 12 has as many as four even divisors; hence, 12 is a member of the sequence.
		

Crossrefs

Numbers n such that 2 appears in row n of A181803. See also A181809, A181810.
A002183(n) gives number of even divisors of a(n).
A053624 gives numbers that set records for number of odd divisors. No number sets records both for its number of odd divisors and its number of even divisors.

Formula

a(n)=2*A002182(n).

A181810 a(n) = largest number k such that A002182(n)/j is highly composite for each integer j from 1 to k.

Original entry on oeis.org

1, 2, 2, 1, 3, 2, 1, 2, 1, 2, 1, 2, 3, 4, 1, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 4, 1, 2, 4, 1, 1, 2, 3, 2, 1, 4, 1, 2, 4, 1, 2, 2, 3, 1, 1, 6, 1, 2, 1, 2, 2, 1, 2, 2, 3, 1, 1, 6, 3, 2, 1, 4, 1, 2, 1, 2, 2, 3, 1, 6, 3, 2, 4, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Matthew Vandermast, Nov 27 2010

Keywords

Comments

Also, largest number k such that, for each integer j from 1 to k, more multiples of j appear among the divisors of A002182(n) than appear among the divisors of any smaller positive integer.
For all positive integer values (j,k) such that jk = n, the number of divisors of n that are multiples of j equals A000005(k). Therefore, n sets a record for the number of its divisors that are multiples of j iff k = n/j is highly composite (A002182).

Examples

			360 is a member of A002182, twice a member of A002182 (360/2 = 180), and three times a member of A002182 (360/3 = 120), but is not four times a member of A002182 (360/4 = 90 is not a member of A002182). Since A002182(13) = 360, a(13) = 3.
360 also sets records for the number of its divisors, the number of its divisors that are multiples of 2 (cf. A181808), and the number of its divisors that are multiples of 3, but not the number of its divisors that are multiples of 4.
		

Crossrefs

a(n) equals the largest number k such that each number from 1 to k appears in row A002182(n) of A181803. a(n) also equals the largest number k such that each of the first k members of row A002182(n) of A056538 is highly composite.
See also A181801, A181808, A181809.

Programs

  • Mathematica
    f[hc_, n_] := Module[{k=1}, While[MemberQ[hc, n/k], k++]; k-1]; s={}; hc={}; dm = 0; Do[d = DivisorSigma[0, n]; If[d > dm, dm = d; AppendTo[hc, n]]; AppendTo[s, f[hc, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Jul 08 2019 *)

Extensions

a(5) corrected and more terms added by Amiram Eldar, Jul 08 2019
Showing 1-4 of 4 results.