A172128 a(n) = floor(phi^n/n), where phi = golden ratio = (1+sqrt(5))/2.
1, 1, 1, 1, 2, 2, 4, 5, 8, 12, 18, 26, 40, 60, 90, 137, 210, 320, 492, 756, 1165, 1800, 2786, 4320, 6710, 10440, 16266, 25380, 39650, 62016, 97108, 152213, 238824, 375060, 589521, 927368, 1459960, 2300100, 3626213, 5720653, 9030450, 14263680, 22542396, 35645400
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..4500
Programs
-
Magma
[Floor((Lucas(n) + Sqrt(5)*Fibonacci(n))/(2*n)): n in [1..50]]; // G. C. Greubel, Apr 17 2022
-
Mathematica
Table[Floor[((1 + Sqrt[5])/2)^n/n], {n, 1, 50}] Table[Floor[GoldenRatio^n/n],{n,50}] (* Harvey P. Dale, Dec 12 2018 *)
-
SageMath
[floor(golden_ratio^n/n) for n in (1..50)] # G. C. Greubel, Apr 17 2022
Formula
a(n) = floor((1/n)*(Fibonacci(n)*phi + Fibonacci(n-1))), where phi = (1+sqrt(5))/2.
Comments