cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A172128 a(n) = floor(phi^n/n), where phi = golden ratio = (1+sqrt(5))/2.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 5, 8, 12, 18, 26, 40, 60, 90, 137, 210, 320, 492, 756, 1165, 1800, 2786, 4320, 6710, 10440, 16266, 25380, 39650, 62016, 97108, 152213, 238824, 375060, 589521, 927368, 1459960, 2300100, 3626213, 5720653, 9030450, 14263680, 22542396, 35645400
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2010

Keywords

Crossrefs

Cf. A000045, A001622 (phi), A181885.

Programs

  • Magma
    [Floor((Lucas(n) + Sqrt(5)*Fibonacci(n))/(2*n)): n in [1..50]]; // G. C. Greubel, Apr 17 2022
    
  • Mathematica
    Table[Floor[((1 + Sqrt[5])/2)^n/n], {n, 1, 50}]
    Table[Floor[GoldenRatio^n/n],{n,50}] (* Harvey P. Dale, Dec 12 2018 *)
  • SageMath
    [floor(golden_ratio^n/n) for n in (1..50)] # G. C. Greubel, Apr 17 2022

Formula

a(n) = floor((1/n)*(Fibonacci(n)*phi + Fibonacci(n-1))), where phi = (1+sqrt(5))/2.

A272318 Integer values of Lucas number A000032(n)/n.

Original entry on oeis.org

1, 3, 321, 3572225067, 44308057022098435739157981016569
Offset: 1

Views

Author

Peter M. Chema, Apr 25 2016

Keywords

Comments

The digital root of this sequence appears to be alternately 3 and 6, aside from the initial term of "1".
A subsequence of A181885. For instance, a(2)=A181885(6), a(3)=A181885(18), a(4)=A181885(54); a(5)=A181885(162); and, a(6)=A181885(486). Also 6, 18, 54, 162 and 486 are consecutive terms of the Pinot sequence A008776. Is this a coincidence?

Crossrefs

Programs

  • Mathematica
    LucasL[#]/# & /@ Range@ 1200 /. _Rational -> Nothing (* Version 10.2, or *)
    Select[Array[LucasL[#]/# &, {1200}], IntegerQ] (* Michael De Vlieger, Apr 25 2016 *)

Formula

a(n) = A000032(A016089(n))/n. - Michel Marcus, Apr 25 2016
Showing 1-2 of 2 results.