cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181885 Integer nearest (1/n)*(r^n), where r = golden ratio = (1 + sqrt(5))/2.

Original entry on oeis.org

2, 1, 1, 2, 2, 3, 4, 6, 8, 12, 18, 27, 40, 60, 91, 138, 210, 321, 492, 756, 1166, 1800, 2786, 4320, 6710, 10440, 16267, 25380, 39650, 62017, 97108, 152214, 238824, 375060, 589521, 927369, 1459960, 2300100
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2010

Keywords

Crossrefs

Programs

  • Magma
    [Round(((1 + Sqrt(5))/2)^n/n): n in [1..50]]; // Vincenzo Librandi, Jun 21 2011
  • Mathematica
    Table[Round[((1 + Sqrt[5])/2)^n/n], {n, 1, 50}]

Formula

a(n) = floor(1/2 + (1/n)*(r^n)), where r = golden ratio = (1 + sqrt(5))/2.

A242926 a(n) = denominator of B(0,n), where B(n,n) = 0, B(n-1,n) = 1/n and otherwise B(m,n) = B(m-1,n+1) - B(m-1,n).

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 4, 3, 5, 1, 4, 1, 7, 15, 8, 1, 18, 1, 10, 21, 11, 1, 24, 5, 13, 9, 14, 1, 30, 1, 16, 11, 17, 35, 12, 1, 19, 39, 20, 1, 42, 1, 22, 9, 23, 1, 48, 7, 25, 17, 26, 1, 54, 55, 28, 19, 29, 1, 20, 1
Offset: 0

Views

Author

Paul Curtz, May 26 2014

Keywords

Comments

The numerators are A189731(n).
B(0,n) = 0, 1, 1, 3/2, 2, 17/6, 4, 23/4, 25/3, 61/5, 18, 107/4, 40, 421/7, ...
is a super autosequence as defined in A242563.
The positive integers in B(0,n) give A064723(n). Corresponding rank: A006093(n+1). B(0,n) is linked to the primes A000040.
Divisor of B(0,n), n > 0: 1, 1, 1, 2, 2, 4, 5, ... = A172128(n+1).
Common (LCM) denominators for the antidiagonals: 1, 1, 1, 2, 2, 6, 6, 12, 12, ... = A139550(n+1)?.
1 = 1
1/2 + 3/2 = 2
1/3 + 5/6 + 17/6 = 4
1/4 + 7/12 + 7/4 + 23/4 = 25/3
etc.
The positive terms of the first bisection are the sum of the corresponding antidiagonal terms upon the 0's.
0 followed by A001610(n), i.e., 0, 0, 2, 3, 6, 10, 17, ... is an autosequence of the second kind.

Crossrefs

Programs

  • Mathematica
    Table[Denominator[(LucasL[n+1]-1)/(n+1)], {n, 0, 100}] (* Artur Jasinski, Nov 06 2022 *)

Formula

a(2n+1) = A175386(n).
a(n) = denominator(A001610(n)/(n+1)). [edited by Michel Marcus, Nov 14 2022]
a(n) = denominator((A000204(n+1) - 1)/(n+1)). - Artur Jasinski, Nov 06 2022

Extensions

a(24)-a(60) from Jean-François Alcover, May 26 2014
Showing 1-2 of 2 results.