cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A242947 a(n) = n / A242926(n-1).

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 2, 11, 3, 13, 2, 1, 2, 17, 1, 19, 2, 1, 2, 23, 1, 5, 2, 3, 2, 29, 1, 31, 2, 3, 2, 1, 3, 37, 2, 1, 2, 41, 1, 43, 2, 5, 2, 47, 1, 7, 2, 3, 2, 53, 1, 1, 2, 3, 2, 59, 3, 61, 2
Offset: 1

Views

Author

Paul Curtz, May 27 2014

Keywords

Comments

a(n) = n: A008578.
a(2n) = 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 3,... .
A242926 is the denominator of a super autosequence based on 1/n. See A189731 and A242563.

Examples

			a(1)=1/1, a(2)=2/1=2, a(3)=3/1=3, a(4)=4/2=2, a(5)=5/1=5, a(6)=6/6=1, a(7)=7/1=7, a(8)=8/4=2, ... .
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Jun 12 2014

A189731 a(n) = numerator of B(0,n) where B(n,n) = 0, B(n-1,n) = 1/n, and B(m,n) = B(m-1,n+1) - B(m-1,n).

Original entry on oeis.org

0, 1, 1, 3, 2, 17, 4, 23, 25, 61, 18, 107, 40, 421, 1363, 1103, 210, 5777, 492, 7563, 24475, 19801, 2786, 103681, 33552, 135721, 146401, 355323, 39650, 1860497, 97108, 2435423, 2627065, 6376021, 20633238, 11128427, 1459960, 43701901
Offset: 0

Views

Author

Paul Curtz, Apr 26 2011

Keywords

Comments

Square array B(m,n) begins:
0, 1/1, 1/1, 3/2, 2/1, 17/6, ...
1/1, 0, 1/2, 1/2, 5/6, 7/6, ...
-1/1, 1/2, 0, 1/3, 1/3, 7/12, ...
3/2, -1/2, 1/3, 0, 1/4, 1/4, ...
-2/1, 5/6, -1/3, 1/4, 0, 1/5, ...
17/6, -7/6, 7/12, -1/4, 1/5, 0, ...
The inverse binomial transform of B(0,n) gives B(n,0) and thus it is an eigensequence in the sense that it remains the same (up to a sign) under inverse binomial transform.
The bisection of B(0,n) (odd part) gives A175385/A175386, and thus a(2*n+1) = A175385(n+1).

Crossrefs

Cf. A000204, A242926 (denominators).

Programs

  • Maple
    B:= proc(m, n) option remember;
          if m=n then 0
        elif n=m+1 then 1/n
        elif n>m then B(m, n-1) +B(m+1, n-1)
        else B(m-1, n+1) -B(m-1, n)
          fi
        end:
    a:= n-> numer(B(0, n)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 29 2011
  • Mathematica
    Rest[Numerator[Abs[CoefficientList[Normal[Series[Log[1 - x^2/(1 + x)], {x, 0, 40}]], x]]]] (* Vaclav Kotesovec, Jul 07 2020 *)
    Table[Numerator[(LucasL[n]-1)/n],{n,1,38}] (* Artur Jasinski, Oct 21 2022 *)

Formula

Numerator of (A000204(n) - 1)/n. - Artur Jasinski, Oct 21 2022
Showing 1-2 of 2 results.