cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A078350 Number of primes in {n, f(n), f(f(n)), ..., 1}, where f is the Collatz function defined by f(x) = x/2 if x is even; f(x) = 3x + 1 if x is odd.

Original entry on oeis.org

0, 1, 3, 1, 2, 3, 6, 1, 6, 2, 5, 3, 3, 6, 4, 1, 4, 6, 7, 2, 1, 5, 4, 3, 7, 3, 25, 6, 6, 4, 24, 1, 7, 4, 3, 6, 7, 7, 11, 2, 25, 1, 8, 5, 4, 4, 23, 3, 7, 7, 6, 3, 3, 25, 24, 6, 8, 6, 11, 4, 5, 24, 20, 1, 7, 7, 9, 4, 3, 3, 22, 6, 25, 7, 2, 7, 6, 11, 11, 2, 5, 25, 24, 1, 1, 8, 9, 5, 10, 4, 20, 4, 3, 23, 20
Offset: 1

Views

Author

Joseph L. Pe, Dec 23 2002

Keywords

Comments

Number of primes in the trajectory of n under the 3x+1 map (i.e., the number of primes until the trajectory reaches 1, including 2 once). - Benoit Cloitre, Dec 23 2002
a(A196871(n)) = 0. - Reinhard Zumkeller, Oct 08 2011
a(A181921(n)) = n and a(m) <> n for m < A181921(n). - Reinhard Zumkeller, Apr 03 2012

Examples

			3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1; in this trajectory 3, 5, 2 are primes hence a(3) = 3. - _Benoit Cloitre_, Dec 23 2002
The finite sequence n, f(n), f(f(n)), ..., 1 for n = 12 is 12, 6, 3, 10, 5, 16, 8, 4, 2, 1, which has three prime terms. Hence a(12) = 3.
		

Crossrefs

Programs

  • Haskell
    a078350 n = sum $ map a010051 $ takeWhile (> 1) $ iterate a006370 n  -- Reinhard Zumkeller, Oct 08 2011
  • Maple
    a:= proc(n) option remember; `if`(n=1, 0,
         `if`(isprime(n), 1, 0)+a(`if`(n::even, n/2, 3*n+1)))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 04 2024
  • Mathematica
    f[n_] := n/2 /; Mod[n, 2] == 0 f[n_] := 3 n + 1 /; Mod[n, 2] == 1 g[n_] := Module[{i, p}, i = n; p = 0; While[i > 1, If[PrimeQ[i], p = p + 1]; i = f[i]]; p]; Table[g[n], {n, 1, 100}]
    Table[Count[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#!=1&],?PrimeQ],{n,100}] (* _Harvey P. Dale, Aug 29 2012 *)
  • PARI
    for(n=2,500,s=n; t=0; while(s!=1,if(isprime(s)==1,t=t+1,t=t); if(s%2==0,s=s/2,s=(3*s+1)); if(s==1,print1(t,","); ); )) \\ Benoit Cloitre, Dec 23 2002
    
  • PARI
    a(n)=my(s=isprime(n));while(n>1,if(n%2,n=(3*n+1)/2,n/=2);s+=isprime(n));s \\ Charles R Greathouse IV, Apr 28 2015
    
  • PARI
    A078350(n,c=n>1)={while(1>=valuation(n,2), isprime(n)&&c++; n=n*3+1);c} \\ M. F. Hasler, Dec 05 2017
    

Formula

a(n) = A055509(n) + 1 for n > 1.
a(n) = 1 when n > 1 is in A000079, i.e., a power of 2. - Benoit Cloitre, Dec 20 2017

Extensions

Edited by N. J. A. Sloane, Jan 17 2009 at the suggestion of R. J. Mathar

A078373 n sets a record for the number of primes in {n, f(n), f(f(n)), ..., 1}, where f is the Collatz function defined by f(x) = x/2 if x is even; f(x) = 3x + 1 if x is odd.

Original entry on oeis.org

2, 3, 7, 19, 27, 97, 171, 231, 487, 763, 1071, 4011, 6171, 10971, 17647, 47059, 99151, 117511, 202471, 260847, 481959, 963919, 1564063, 1805311, 1993215, 6991599, 8400511, 11200681, 36791535, 46564287, 103359483, 206718967, 359502063
Offset: 1

Views

Author

Joseph L. Pe, Dec 24 2002

Keywords

Examples

			The sequence n, f(n), f(f(n)), ..., 1 for n = 7 is: 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, which has six prime terms, more prime terms than for any n < 7. Hence 7 sets a record and so belongs to the sequence.
		

Crossrefs

A362958 gives the corresponding numbers of primes.

Programs

Extensions

a(18)-a(30) from Donovan Johnson, Jul 02 2010
a(31)-a(33) from Carlos Rivera, Apr 15 2012
Showing 1-2 of 2 results.