A182143 Number of independent vertex sets in the Moebius ladder graph with 2n nodes (n >= 0).
1, 3, 5, 15, 33, 83, 197, 479, 1153, 2787, 6725, 16239, 39201, 94643, 228485, 551615, 1331713, 3215043, 7761797, 18738639, 45239073, 109216787, 263672645, 636562079, 1536796801, 3710155683, 8957108165, 21624372015, 52205852193, 126036076403, 304278004997
Offset: 0
Links
- Cesar Bautista, Table of n, a(n) for n = 0..1000
- C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Moebius Ladder
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for linear recurrences with constant coefficients, signature (1,3,1).
Programs
-
Magma
I:=[1,3,5]; [n le 3 select I[n] else Self(n-1)+3*Self(n-2)+Self(n-3): n in [1..31]]; // Bruno Berselli, Apr 14 2012
-
Mathematica
Table[(1 + Sqrt[2])^n + (1 - Sqrt[2])^n - (-1)^n, {n, 0, 30}] (* Bruno Berselli, Apr 14 2012 *) Table[LucasL[n, 2] - (-1)^n, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *) LinearRecurrence[{1, 3, 1}, {1, 3, 5}, 20] (* Eric W. Weisstein, Mar 31 2017 *) CoefficientList[Series[(-1 - 2 x + x^2)/(-1 + x + 3 x^2 + x^3), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
-
PARI
Vec((x^2-2*x-1)/((x+1)*(x^2+2*x-1))+O(x^31)) \\ Bruno Berselli, Apr 14 2012
Formula
G.f.: (x^2-2*x-1)/((x+1)*(x^2+2*x-1)).
a(n) = (1+sqrt(2))^n + (1-sqrt(2))^n - (-1)^n = A002203(n) - (-1)^n.
a(n) = a(n-1) + 3*a(n-2) + a(n-3) with a(0)=1, a(1)=3, a(2)=5.
From Peter Bala, Jun 29 2015: (Start)
a(n) = Pell(n-1) + Pell(n+1) - (-1)^n.
a(n) = [x^n] ( (1 + 2*x + sqrt(1 + 8*x + 8*x^2))/2 )^n.
Comments