cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A182193 Sequence of row differences related to table A182355.

Original entry on oeis.org

-1, 1, 19, 125, 743, 4345, 25339, 147701, 860879, 5017585, 29244643, 170450285, 993457079, 5790292201, 33748296139, 196699484645, 1146448611743, 6681992185825, 38945504503219, 226991034833501, 1323000704497799, 7711013192153305, 44943078448422043
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 17 2012

Keywords

Comments

Sequence of row differences in table A182355. If A182355(k + 1, 0) - A182355(k, 0) = -1, a(n) = A182355(k + 1, n) - A182355(k, n).
If p is a prime of the form 8r = +/- 3, a(p) = 5 mod p; if p is a prime of the form 8r = +/- 1, a(p) = 1 mod p.

Crossrefs

Programs

  • Magma
    I:=[-1,1]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2)+12: n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
    
  • Maple
    Pell:= proc(n) option remember;
        if n<2 then n
      else 2*Pell(n-1) + Pell(n-2)
        fi; end:
    seq(Pell(2*n) + 2*Pell(2*n-1) - 3, n=0..40); # G. C. Greubel, May 24 2021
  • Mathematica
    LinearRecurrence[{7,-7,1},{-1,1,19},30] (* Harvey P. Dale, Feb 09 2014 *)
  • PARI
    Vec(-(1-8*x-5*x^2)/((1-x)*(1-6*x+x^2)) + O(x^30)) \\ Colin Barker, Mar 05 2016
    
  • Sage
    [lucas_number2(2*n,2,-1) - lucas_number1(2*n,2,-1) - 3 for n in (0..40)] # G. C. Greubel, May 24 2021

Formula

a(n) = 6*a(n-1) - a(n-2) + 12.
a(0)=-1, a(1)=1, a(2)=19, a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). - Harvey P. Dale, Feb 09 2014
From Colin Barker, Mar 05 2016: (Start)
a(n) = -3 + (1/4)*( (4-sqrt(2))*(3+2*sqrt(2))^n + (4+sqrt(2))*(3-2*sqrt(2))^n ).
G.f.: -(1-8*x-5*x^2) / ((1-x)*(1-6*x+x^2)).
(End)
a(n) = A002203(2*n) - A000129(2*n) - 3. - G. C. Greubel, May 24 2021

Extensions

More terms from Harvey P. Dale, Feb 09 2014

A182118 Table of triangular arguments such that if A002262(14*k) = "r" then the product A182440(k,i + 1) *A182440(k,i + 2) equals "r" + a(k,i)*(a(k,i)+1)/2.

Original entry on oeis.org

-1, 0, -5, 63, 8, -8, 440, 151, 15, -9, 0, 996, 224, 20, -11, 0, 0, 1455, 267, 26, -12, 0, 0, 0, 1720, 325, 31, -13, 0, 0, 0, 0, 2082, 368, 36, -14, 0, 0, 0, 0, 0, 2347, 411, 41, -15, 0, 0, 0, 0, 0, 0, 2612, 454, 46
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 12 2012

Keywords

Comments

It is noted that the difference between adjacent rows of the respective elements, depends on the difference between the elements of column 0 in the respective rows. It is apparent that the series of differences corresponding to a difference of d in column 0, i.e. A(k+1,0) - A(k,0) = d, is defined as follows: D(0) = d, D(1) = 4 - d, D(n) = 6*D(n-1) - D(n-2) -8*d + 4. The sequence of differences corresponding to a difference of -1 or 0 in column 0 form related series A182191 and A182190.
The Mathematica program below first calculates an array containing only the first four nonnegative triangular arguments P of each row then changes at most 2 of the arguments to the corresponding negative value, N = -P -1 in order to obtain the relation a(k,i) -7*a(k,i+1) + 7*a(k,i+2) - a(k,i+3) = 0, then chooses the appropriate argument to continue this relationship with the remainder of the row. In this way, the sequence is finally determined. Thus in this table a few 0's have been changed to -1.

Crossrefs

Programs

  • Mathematica
    highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
    While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
    xS0]];
    overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
    While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
    xS2 - (xS0*(1+xS0)/2)]];
    tt = SparseArray[{{12,1} -> 0,{1,12} -> 0}];
    K1 = 0;
    m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1+(J1*2+1));
    K2 = 6 K1 - m + X; K3 = 6 K2 - K1 + X;K4 = 6 K3 - K2 + X;
    o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1];
    tt[[2,K1+1]] = highTri[K1*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o];
    K1++];k = 1;
    While[k<13,z = 1; xx = 99; While[z<5 && xx == 99,
    If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]];
    If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t;
    w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++];
    t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[],
    t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k,
    tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++];
    a=1;list2 = Reap[While[a<12, b=a; While[b>4,Sow[0];b--];While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2
Showing 1-2 of 2 results.