cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182333 Number of arrangements of n bishops such that every square of the board is controlled by at least one bishop.

Original entry on oeis.org

1, 4, 6, 25, 104, 484, 2136, 11664, 71136, 451584, 3006720, 21902400, 176774400, 1456185600, 12758860800, 117456998400, 1181072793600, 12023694950400, 130072449024000, 1451792885760000, 17487355576320000, 212389727477760000, 2729844680048640000
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 25 2012

Keywords

Comments

Number of minimum dominating sets in the n X n bishop graph. - Eric W. Weisstein, Jun 04 2017

References

  • A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, vol.1, 1987, p.11 and p.83-88.

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,1,((2*Floor[n/4])!)^2/128*(n^5+3*n^4+n^3+35*n^2+38*n+2-(n^5-n^4-7*n^3-n^2-10*n-30)*(-1)^n-4*(n^3+2*n^2+n-4)*n*Cos[Pi*n/2]-2*(n^5+n^4-11*n^3-7*n^2-2*n+2)*Sin[Pi*n/2])],{n,1,25}]
  • PARI
    a(n)={if(n==1, 1, (n\4*2)!^2*if(n%4<2, if(n%2==0, (n+1)^2, (n^3 + 3*n^2 + 2*n - 2)/2), if(n%2==0, (n^2+n+2)^2/4, (n+1)*(n-1)*(n^3 + n^2 - 6*n + 6)/8))/4)} \\ Andrew Howroyd, Sep 09 2019

Formula

a(n) = (((2*floor(n/4))!)^2/128)*(n^5 + 3*n^4 + n^3 + 35*n^2 + 38*n + 2 - (n^5 - n^4 - 7*n^3 - n^2 - 10*n - 30)*(-1)^n -4*(n^3 + 2*n^2 + n - 4)*n*cos(Pi*n/2) - 2*(n^5 + n^4 - 11*n^3 - 7*n^2 - 2*n + 2)*sin(Pi*n/2)), for n > 1.
a(n) = A323500(n) * A323501(n) for n > 1. - Andrew Howroyd, Sep 08 2019