A182333 Number of arrangements of n bishops such that every square of the board is controlled by at least one bishop.
1, 4, 6, 25, 104, 484, 2136, 11664, 71136, 451584, 3006720, 21902400, 176774400, 1456185600, 12758860800, 117456998400, 1181072793600, 12023694950400, 130072449024000, 1451792885760000, 17487355576320000, 212389727477760000, 2729844680048640000
Offset: 1
Keywords
References
- A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, vol.1, 1987, p.11 and p.83-88.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Bishop Graph
- Eric Weisstein's World of Mathematics, Dominating Set
Programs
-
Mathematica
Table[If[n==1,1,((2*Floor[n/4])!)^2/128*(n^5+3*n^4+n^3+35*n^2+38*n+2-(n^5-n^4-7*n^3-n^2-10*n-30)*(-1)^n-4*(n^3+2*n^2+n-4)*n*Cos[Pi*n/2]-2*(n^5+n^4-11*n^3-7*n^2-2*n+2)*Sin[Pi*n/2])],{n,1,25}]
-
PARI
a(n)={if(n==1, 1, (n\4*2)!^2*if(n%4<2, if(n%2==0, (n+1)^2, (n^3 + 3*n^2 + 2*n - 2)/2), if(n%2==0, (n^2+n+2)^2/4, (n+1)*(n-1)*(n^3 + n^2 - 6*n + 6)/8))/4)} \\ Andrew Howroyd, Sep 09 2019
Formula
a(n) = (((2*floor(n/4))!)^2/128)*(n^5 + 3*n^4 + n^3 + 35*n^2 + 38*n + 2 - (n^5 - n^4 - 7*n^3 - n^2 - 10*n - 30)*(-1)^n -4*(n^3 + 2*n^2 + n - 4)*n*cos(Pi*n/2) - 2*(n^5 + n^4 - 11*n^3 - 7*n^2 - 2*n + 2)*sin(Pi*n/2)), for n > 1.
Comments