A182368 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square grid graph G_(n,n), highest powers first.
1, 0, 1, -4, 6, -3, 0, 1, -12, 66, -216, 459, -648, 594, -323, 79, 0, 1, -24, 276, -2015, 10437, -40614, 122662, -292883, 557782, -848056, 1022204, -960627, 682349, -346274, 112275, -17493, 0, 1, -40, 780, -9864, 90798, -647352, 3714180, -17590911, 69997383
Offset: 1
Examples
3 example graphs: o---o---o . | | | . o---o o---o---o . | | | | | . o o---o o---o---o Graph: G_(1,1) G_(2,2) G_(3,3) Vertices: 1 4 9 Edges: 0 4 12 The square grid graph G_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0]. Triangle T(n,k) begins: 1, 0; 1, -4, 6, -3, 0; 1, -12, 66, -216, 459, -648, 594, ... 1, -24, 276, -2015, 10437, -40614, 122662, ... 1, -40, 780, -9864, 90798, -647352, 3714180, ... 1, -60, 1770, -34195, 486210, -5421612, 49332660, ... 1, -84, 3486, -95248, 1926585, -30755376, 403410654, ... 1, -112, 6216, -227871, 6205479, -133865298, 2382122274, ... 1, -144, 10296, -487280, 17169852, -480376848, 11114098408, ... ...
Links
- Alois P. Heinz, Rows n = 1..9, flattened
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
- Eric Weisstein's World of Mathematics, Grid Graph
- Wikipedia, Chromatic Polynomial
Crossrefs
Programs
-
Mathematica
Reverse /@ CoefficientList[Table[ChromaticPolynomial[GridGraph[{n, n}], x], {n, 5}], x] // Flatten (* Eric W. Weisstein, May 01 2017 *)
Comments