A182541 Coefficients in g.f. for certain marked mesh patterns.
1, 4, 19, 107, 702, 5274, 44712, 422568, 4407120, 50292720, 623471040, 8344624320, 119938250880, 1842662908800, 30136443724800, 522780938265600, 9587900602828800, 185371298306611200, 3768248516336640000, 80349669847157760000, 1793238207723325440000, 41806479141525288960000
Offset: 3
Keywords
Examples
a(1) corresponds to the 1 X 2 matrix 11 -> 1 element is left and there are no more ones to delete => n(1) = 1. a(2) corresponds to the 3 X 3 matrix 112 121 211 -> 102 120 210 -> 102 100 010 only 4 nonzero elements are left and a(2) = 4 = 3 + 3/3. a(3) = 12 + 12/3 + 12/4 = 19 = 19 nonzero elements left in the 4 X 12 matrix after the deletion for each element with the value of 1 one element with the value of 1, for every element with the value of 2 - two elements with the value of 2 and for each element with the value of 3 - three elements with the value of 3). - _Anton Zakharov_, Jun 28 2016
Links
- Joerg Arndt, Table of n, a(n) for n = 3..101
- Sergey Kitaev and Jeffrey Remmel, Simple marked mesh patterns, arXiv preprint arXiv:1201.1323 [math.CO], 2012.
- Anton Zakharov, Matrix-related sequences
Programs
-
Mathematica
Table[Numerator[(n+1)!/2] *(1 + Sum[1/(k+1), {k, 2, n}]),{n, 1, 22}] (* Indranil Ghosh, Mar 12 2017 *)
-
PARI
for(n=1, 22, print1(numerator((n + 1)!/2) * (1 + sum(k=2, n, 1/(k+1))),", ")) \\ Indranil Ghosh, Mar 12 2017
Formula
a(n) = A001710(n+1) * (1 + Sum_{k=2..n} 1/(k+1) ). - Anton Zakharov, Jun 28 2016
a(n) ~ sqrt(Pi/2)*exp(-n)*n^(n-1/2)*log(n). - Ilya Gutkovskiy, Jul 12 2016
From Pedro Caceres, Apr 19 2019: (Start)
a(n) = (n-3)! * Sum_{i=1..n-2} (Sum_{j=1..i} (i/j)).
a(n) = (1/4) * (n-1)! * (2*harmonic(n-1)-1). (End)
a(n) = (-(n-1)! + 2 * |Stirling1(n,2)|)/4. - Seiichi Manyama, Sep 05 2024
Extensions
More terms from Anton Zakharov, Jun 28 2016
Comments