A182603 Number of conjugacy classes in GL(n,8).
1, 7, 63, 504, 4088, 32697, 262080, 2096577, 16776648, 134213128, 1073737224, 8589897288, 68719439943, 549755515008, 4398046212672, 35184369697407, 281474974319672, 2251799794521144, 18014398490350584, 144115187922510840, 1152921504453534648
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Magma
/* The program does not work for n>6: */ [1] cat [NumberOfClasses(GL(n, 8)): n in [1..6]];
-
Maple
with(numtheory): b:= proc(n) b(n):= add(phi(d)*8^(n/d), d=divisors(n))/n-1 end: a:= proc(n) a(n):= `if`(n=0, 1, add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
Mathematica
b[n_] := Sum[EulerPhi[d]*8^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
Formula
G.f.: prod((1-x^k)/(1-8*x^k),k=1..infinity).
Extensions
Extended by D. S. McNeil, Dec 06 2010
MAGMA code edited by Vincenzo Librandi, Jan 23 2013