A138880
Sum of all parts of all partitions of n that do not contain 1 as a part.
Original entry on oeis.org
0, 2, 3, 8, 10, 24, 28, 56, 72, 120, 154, 252, 312, 476, 615, 880, 1122, 1584, 1995, 2740, 3465, 4620, 5819, 7680, 9575, 12428, 15498, 19824, 24563, 31170, 38378, 48224, 59202, 73678, 90055, 111384, 135420, 166364, 201630, 246120, 297045, 360822
Offset: 1
Cf.
A000041,
A002865,
A066186,
A133041,
A138135,
A138136,
A138137,
A138138,
A138151,
A138879,
A139100.
-
Table[Total[Flatten[Select[IntegerPartitions[n],FreeQ[#,1]&]]],{n,50}] (* Harvey P. Dale, May 24 2015 *)
a[n_] := (PartitionsP[n] - PartitionsP[n-1])*n; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 07 2015 *)
A194797
Imbalance of the sum of parts of all partitions of n.
Original entry on oeis.org
0, -2, 1, -7, 3, -21, 7, -49, 23, -97, 57, -195, 117, -359, 256, -624, 498, -1086, 909, -1831, 1634, -2986, 2833, -4847, 4728, -7700, 7798, -12026, 12537, -18633, 19745, -28479, 30723, -42955, 47100, -64284, 71136, -95228, 106402, -139718, 157327, -203495
Offset: 1
For n = 6 the illustration of the three views of the shell model with 6 shells shows an imbalance (see below):
------------------------------------------------------
Partitions Tree Table 1.0
of 6. A194805 A135010
------------------------------------------------------
6 6 6 . . . . .
3+3 3 3 . . 3 . .
4+2 4 4 . . . 2 .
2+2+2 2 2 . 2 . 2 .
5+1 1 5 5 . . . . 1
3+2+1 1 3 3 . . 2 . 1
4+1+1 4 1 4 . . . 1 1
2+2+1+1 2 1 2 . 2 . 1 1
3+1+1+1 1 3 3 . . 1 1 1
2+1+1+1+1 2 1 2 . 1 1 1 1
1+1+1+1+1+1 1 1 1 1 1 1 1
------------------------------------------------------
.
. 6 3 4 2 1 3 5
. Table 2.0 . . . . 1 . . Table 2.1
. A182982 . . . 2 1 . . A182983
. . 3 . . 1 2 .
. . . 2 2 1 . .
. . . . . 1
------------------------------------------------------
The sum of all parts > 1 on the left hand side is 34 and the sum of all parts > 1 on the right hand side is 13, so a(6) = -34 + 13 = -21. On the other hand for n = 6 the first n terms of A138880 are 0, 2, 3, 8, 10, 24 thus a(6) = 0-2+3-8+10-24 = -21.
Cf.
A000041,
A002865,
A135010,
A138121,
A138880,
A141285,
A182710,
A182742,
A182743,
A182746,
A182747,
A182982,
A182983,
A182994,
A182995,
A194796,
A194805.
-
with(combinat):
a:= proc(n) option remember;
n *(-1)^n *(numbpart(n-1)-numbpart(n)) +a(n-1)
end: a(0):=0:
seq(a(n), n=1..50); # Alois P. Heinz, Apr 04 2012
-
a[n_] := Sum[(-1)^(k-1)*k*(PartitionsP[k] - PartitionsP[k-1]), {k, 1, n}]; Array[a, 50] (* Jean-François Alcover, Dec 09 2016 *)
A182711
Triangle read by rows in which row n lists the parts > 1 of the last section of the set of partitions of n in an order similar to A138136 but in this case the partitions with the least number of parts are listed first.
Original entry on oeis.org
0, 2, 3, 4, 2, 2, 5, 3, 2, 6, 4, 2, 3, 3, 2, 2, 2, 7, 5, 2, 4, 3, 3, 2, 2, 8, 6, 2, 5, 3, 4, 4, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 9, 7, 2, 6, 3, 5, 4, 5, 2, 2, 4, 3, 2, 3, 3, 3, 3, 2, 2, 2, 10, 8, 2, 7, 3, 6, 4, 5, 5, 6, 2, 2, 5, 3, 2, 4, 4, 2, 4, 3, 3, 4, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2
Offset: 1
0,
2,
3,
4,2,2,
5,3,2,
6,4,2,3,3,2,2,2,
7,5,2,4,3,3,2,2,
8,6,2,5,3,4,4,4,2,2,3,3,2,2,2,2,2,
9,7,2,6,3,5,4,5,2,2,4,3,2,3,3,3,3,2,2,2,
10,8,2,7,3,6,4,5,5,6,2,2,5,3,2,4,4,2,4,3,3,4,2,2,2,3,3,2,2,2,2,2,2,2
Showing 1-3 of 3 results.
Comments