cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182818 G.f.: exp( Sum_{n>=1} sigma(2n)*x^n/n ).

Original entry on oeis.org

1, 3, 8, 19, 41, 83, 161, 299, 538, 942, 1610, 2694, 4427, 7153, 11387, 17884, 27741, 42543, 64565, 97034, 144519, 213432, 312720, 454803, 656835, 942364, 1343596, 1904354, 2684008, 3762667, 5248002, 7284132, 10063319, 13841107, 18956002
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2010

Keywords

Comments

sigma(2n) = A000203(2n), the sum of divisors of 2n (A062731).
Compare g.f. to P(x), the g.f. of partition numbers (A000041): P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ).
Number of partitions of n where there are 2 kinds of even parts and 3 kinds of odd parts. - Ilya Gutkovskiy, Jan 17 2018

Examples

			G.f.: A(x) = 1 + 3*x + 8*x^2 + 19*x^3 + 41*x^4 + 83*x^5 + 161*x^6 +...
log(A(x)) = 3*x + 7*x^2/2 + 12*x^3/3 + 15*x^4/4 + 18*x^5/5 + 28*x^6/6 + 24*x^7/7 + 31*x^8/8 + ... + sigma(2n)*x^n/n + ...
		

Crossrefs

Programs

  • Maple
    with(combinat):
    seq(add((-1)^k*numbpart(k)*numbpart(2*n - k), k = 0..2*n), n = 0..40);
  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2*n])*(x^n/n), {n, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 29 2015 *)
    nmax = 40; CoefficientList[Series[Product[(1+x^k)/(1-x^k)^2, {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Nov 29 2015 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(2*m)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    x='x+O('x^66); Vec(eta(x^2)/eta(x)^3) \\ Joerg Arndt, Dec 05 2010

Formula

G.f.: A(x) = E(x^2)/E(x)^3 where E(x)=Product_{n>=1} (1 - x^n). - Joerg Arndt, Dec 05 2010
Conjecture: exp( Sum_{n>=1} sigma(s*n)*x^n/n ) == Product_{d|s} eta(x^d)^(-moebius(d)*sigma(s/d)). - Joerg Arndt, Dec 05 2010
The ordinary generating function A(x) is the infinite product F(x) * F(x^2) * F(x^3) * ..., where F(x) is the ordinary generating function of A005408. - Gary W. Adamson, Jul 15 2012
a(n) ~ 5^(3/4) * exp(Pi*sqrt(5*n/3)) / (16 * 3^(3/4) * n^(5/4)). - Vaclav Kotesovec, Nov 29 2015
From Peter Bala, Jan 24 2016: (Start)
a(n) = Sum_{k = 0..2*n} (-1)^k*p(k)*p(2*n-k), where p(n) = A000041(n) is the partition function.
A(x^2) = 1/Product_{n>=1} (1 - (-x)^n) * 1/Product_{n>=1} (1 - x^n). (End)
G.f.: A(x) = Product_{n>=1} (1 - x^(2*n))/(1 - x^n)^3 follows directly from the above formula by Joerg Arndt. - Paul D. Hanna, Dec 07 2018