A182853 Squarefree composite integers and powers of squarefree composite integers.
6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 159, 161
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Fixed Point
- Eric Weisstein's World of Mathematics, Map
Crossrefs
Programs
-
PARI
isoka(n) = (omega(n) > 1) && issquarefree(n); \\ A120944 isok(n) = isoka(n) || (ispower(n,,&k) && isoka(k)); \\ Michel Marcus, Jun 24 2017
-
Python
from math import isqrt from sympy import mobius, primepi, integer_nthroot def A182853(n): def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-primepi(x)) def f(x): return n-2+x+(y:=x.bit_length())-sum(g(integer_nthroot(x,k)[0]) for k in range(1,y)) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 19 2024
-
Scheme
(define A182853 (MATCHING-POS 1 1 (lambda (n) (= 3 (A182850 n))))) ;; After the alternative definition of the sequence given by the original author. Requires also MATCHING-POS macro from my IntSeq-library - Antti Karttunen, Feb 05 2016
Comments