cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183003 a(n) = A183002(n)/2.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 5, 7, 7, 8, 9, 11, 11, 13, 13, 15, 16, 17, 17, 20, 21, 22, 23, 25, 25, 28, 28, 30, 31, 32, 33, 37, 37, 38, 39, 42, 42, 45, 45, 47, 49, 50, 50, 54, 55, 57, 58, 60, 60, 63, 64, 67, 68, 69, 69, 74, 74, 75, 77, 80, 81, 84, 84, 86, 87, 90, 90, 95, 95, 96, 98, 100, 101, 104, 104, 108, 110, 111, 111, 116, 117, 118, 119, 122, 122, 127, 128, 130, 131, 132, 133, 138, 138, 140, 142, 146
Offset: 1

Views

Author

Omar E. Pol, Jan 27 2011

Keywords

Comments

For n >= 2, a(n) is the number of partitions of n-1 into 3 parts such that the largest part is greater than or equal to the product of the other two. For example, a(9) = 4 since the partitions for 8 would be 1+1+6 = 1+2+5 = 1+3+4 = 2+2+4, but not 2+3+3 since 2*3 > 3. - Wesley Ivan Hurt, Jan 03 2022
Conjecture: partial sums of A072670. - Sean A. Irvine, Jul 14 2022

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[d = DivisorSigma[0, n]; If[OddQ[d], d - 1, d - 2], {n, 100}]]/2
  • PARI
    a(n) = sum(k=1, n, numdiv(k) - 2 + numdiv(k)%2)/2; \\ Michel Marcus, Jan 04 2022

Formula

a(n) = Sum_{k=1..floor((n-1)/3)} Sum_{i=k..floor((n-k-1)/2)} sign(floor((n-i-k-1)/(i*k))). - Wesley Ivan Hurt, Jan 03 2022
a(n) = (1/2) * Sum_{k=1..n} (tau(k)-2 + (tau(k) mod 2)), tau = A000005. - Alois P. Heinz, Jan 04 2022
a(n) ~ n * (log(n) + 2*gamma - 3) / 2, where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 19 2024