A183063 Number of even divisors of n.
0, 1, 0, 2, 0, 2, 0, 3, 0, 2, 0, 4, 0, 2, 0, 4, 0, 3, 0, 4, 0, 2, 0, 6, 0, 2, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 2, 0, 6, 0, 4, 0, 4, 0, 2, 0, 8, 0, 3, 0, 4, 0, 4, 0, 6, 0, 2, 0, 8, 0, 2, 0, 6, 0, 4, 0, 4, 0, 4, 0, 9, 0, 2, 0, 4, 0, 4, 0, 8, 0, 2, 0, 8, 0, 2
Offset: 1
Examples
For n = 12, set of even divisors is {2, 4, 6, 12}, so a(12) = 4. On the other hand, there are six partitions of 12 into equal parts: [12], [6, 6], [4, 4, 4], [3, 3, 3, 3], [2, 2, 2, 2, 2, 2] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. And there are two partitions of 12 into consecutive parts: [12] and [5, 4, 3], so a(12) = 6 - 2 = 4, equaling the number of even divisors of 12. - _Omar E. Pol_, May 04 2017
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function tau_e(n).
Crossrefs
Programs
-
Haskell
a183063 = sum . map (1 -) . a247795_row -- Reinhard Zumkeller, Sep 28 2014, Jan 15 2013, Jan 10 2012
-
Magma
[IsOdd(n) select 0 else #[d:d in Divisors(n)|IsEven(d)]:n in [1..100]]; // Marius A. Burtea, Dec 16 2019
-
Maple
A183063 := proc(n) if type(n,'even') then numtheory[tau](n/2) ; else 0; end if; end proc: # R. J. Mathar, Jun 18 2015
-
Mathematica
Table[Length[Select[Divisors[n], EvenQ]], {n, 90}] (* Alonso del Arte, Jan 10 2012 *) a[n_] := (e = IntegerExponent[n, 2]) * DivisorSigma[0, n / 2^e]; Array[a, 100] (* Amiram Eldar, Jul 06 2022 *)
-
PARI
a(n)=if(n%2,0,numdiv(n/2)) \\ Charles R Greathouse IV, Jul 29 2011
-
Python
from sympy import divisor_count def A183063(n): return divisor_count(n>>(m:=(~n&n-1).bit_length()))*m # Chai Wah Wu, Jul 16 2022
-
Sage
def A183063(n): return len([1 for d in divisors(n) if is_even(d)]) [A183063(n) for n in (1..80)] # Peter Luschny, Feb 01 2012
Formula
a(2n-1) = 0; a(2n) = A000005(n).
G.f.: Sum_{d>=1} x^(2*d)/(1 - x^(2*d)) and generally for the number of divisors that are divisible by k: Sum_{d>=1} x^(k*d)/(1 - x^(k*d)). - Geoffrey Critzer, Apr 15 2014
Dirichlet g.f.: zeta(s)^2/2^s and generally for the number of divisors that are divisible by k: zeta(s)^2/k^s. - Geoffrey Critzer, Mar 28 2015
From Ridouane Oudra, Sep 02 2019: (Start)
a(n) = Sum_{i=1..n} (floor(n/(2*i)) - floor((n-1)/(2*i))).
Conjecture: a(n) = lim_{x->n} f(Pi*x), where f(x) = sin(x)*Sum_{k>0} (cot(x/(2*k))/(2*k) - 1/x). - Velin Yanev, Dec 16 2019
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma - 1/2 - log(2)/2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000005(k) = 1-log(2) (A244009). - Amiram Eldar, Mar 01 2023
Extensions
Formula corrected by Charles R Greathouse IV, Jul 29 2011
Comments