cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183091 a(n) is the product of the divisors p^k of n where p is prime and k >= 1.

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 64, 27, 10, 11, 24, 13, 14, 15, 1024, 17, 54, 19, 40, 21, 22, 23, 192, 125, 26, 729, 56, 29, 30, 31, 32768, 33, 34, 35, 216, 37, 38, 39, 320, 41, 42, 43, 88, 135, 46, 47, 3072, 343, 250, 51, 104, 53, 1458
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Product of n-th row of triangle A210208. - Reinhard Zumkeller, Mar 18 2012

Examples

			For n = 12, set of such divisors is {1, 2, 3, 4}; a(12) = 1*2*3*4 = 24.
		

Crossrefs

Programs

  • Haskell
    a183091 = product . a210208_row  -- Reinhard Zumkeller, Mar 18 2012
    
  • Maple
    A183091 := proc(n) local a,d; a := 1 ;for d in numtheory[divisors](n) minus {1} do  if nops( numtheory[factorset](d)) = 1 then a := a*d; end if; end do: a ; end proc: # R. J. Mathar, Apr 14 2011
  • Mathematica
    Table[Product[d, {d, Select[Divisors[n], Length[FactorInteger[#]] == 1 &]}], {n,1, 54}] (* Geoffrey Critzer, Mar 18 2015 *)
    f[p_, e_] := p^(e*(e+1)/2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 31 2023 *)
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^binomial(f[i,2]+1,2)) \\ Charles R Greathouse IV, Nov 11 2014

Formula

a(n) = A007955(n) / A183092(n).
Multiplicative with a(p^k) = p^(k*(k+1)/2).
The Dirichlet g.f. of a(n) / abs(A153038(n)) is Product_{k >= 0} zeta(s+k). - Álvar Ibeas, Nov 10 2014