A183096 a(n) = number of divisors of n that are not perfect powers.
0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 3, 1, 1, 4, 1, 4, 3, 3, 1, 5, 1, 3, 1, 4, 1, 7, 1, 1, 3, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 4, 4, 3, 1, 6, 1, 4, 3, 4, 1, 5, 3, 5, 3, 3, 1, 10, 1, 3, 4, 1, 3, 7, 1, 4, 3, 7, 1, 7, 1, 3, 4, 4, 3, 7, 1, 6, 1, 3, 1, 10, 3, 3, 3, 5, 1, 10, 3, 4, 3, 3, 3, 7, 1, 4, 4, 5
Offset: 1
Keywords
Examples
For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 4.
Links
Programs
-
Mathematica
ppQ[n_] := GCD @@ FactorInteger[n][[;;, 2]] > 1; ppQ[1] = True; a[n_] := DivisorSum[n, 1 &, !ppQ[#] &]; Array[a, 100] (* Amiram Eldar, Jan 30 2025 *)
-
PARI
A091050(n) = (1+ sumdiv(n, d, ispower(d)>1)); \\ This function from Michel Marcus, Sep 21 2014 A183096(n) = (numdiv(n) - A091050(n)); \\ Antti Karttunen, Nov 23 2017
Formula
a(1) = 0, a(p) = 1, a(pq) = 3, a(pq...z) = 2^k - 1, a(p^k) = 1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Sum_{k=1..n} a(k) ~ n*(log(n) + 2*gamma - A072102 - 2), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 29 2025
Comments