cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183096 a(n) = number of divisors of n that are not perfect powers.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 3, 1, 1, 4, 1, 4, 3, 3, 1, 5, 1, 3, 1, 4, 1, 7, 1, 1, 3, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 4, 4, 3, 1, 6, 1, 4, 3, 4, 1, 5, 3, 5, 3, 3, 1, 10, 1, 3, 4, 1, 3, 7, 1, 4, 3, 7, 1, 7, 1, 3, 4, 4, 3, 7, 1, 6, 1, 3, 1, 10, 3, 3, 3, 5, 1, 10, 3, 4, 3, 3, 3, 7, 1, 4, 4, 5
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Sequence is not the same as A183093: a(72) = 7, A183093(72) = 6.

Examples

			For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 4.
		

Crossrefs

Programs

  • Mathematica
    ppQ[n_] := GCD @@ FactorInteger[n][[;;, 2]] > 1; ppQ[1] = True; a[n_] := DivisorSum[n, 1 &, !ppQ[#] &]; Array[a, 100] (* Amiram Eldar, Jan 30 2025 *)
  • PARI
    A091050(n) = (1+ sumdiv(n, d, ispower(d)>1)); \\ This function from Michel Marcus, Sep 21 2014
    A183096(n) = (numdiv(n) - A091050(n)); \\ Antti Karttunen, Nov 23 2017

Formula

a(n) = A000005(n) - A091050(n).
a(1) = 0, a(p) = 1, a(pq) = 3, a(pq...z) = 2^k - 1, a(p^k) = 1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Sum_{k=1..n} a(k) ~ n*(log(n) + 2*gamma - A072102 - 2), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 29 2025