cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A304326 Number of ways to write n as a product of a number that is not a perfect power and a squarefree number.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 0, 1, 3, 1, 3, 1, 3, 3, 0, 1, 3, 1, 3, 3, 3, 1, 2, 1, 3, 0, 3, 1, 7, 1, 0, 3, 3, 3, 3, 1, 3, 3, 2, 1, 7, 1, 3, 3, 3, 1, 2, 1, 3, 3, 3, 1, 2, 3, 2, 3, 3, 1, 7, 1, 3, 3, 0, 3, 7, 1, 3, 3, 7, 1, 3, 1, 3, 3, 3, 3, 7, 1, 2, 0, 3, 1, 7, 3, 3, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 10 2018

Keywords

Examples

			The a(180) = 7 ways are (6*30), (12*15), (18*10), (30*6), (60*3), (90*2), (180*1).
		

Crossrefs

Positions of zeros are A246549. Range appears to be A075427.

Programs

  • Mathematica
    radQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]===1];
    Table[Length[Select[Divisors[n],radQ[#]&&SquareFreeQ[n/#]&]],{n,100}]
  • PARI
    a(n)={sumdiv(n, d, d<>1 && !ispower(d) && issquarefree(n/d))} \\ Andrew Howroyd, Aug 26 2018

A304327 Number of ways to write n as a product of a perfect power and a squarefree number.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 10 2018

Keywords

Comments

First term greater than 2 is a(746496) = 3.

Examples

			The a(746496) = 3 ways are 12^5*3, 72^3*2, 864^2*1.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Divisors[n],(#===1||GCD@@FactorInteger[#][[All,2]]>1)&&SquareFreeQ[n/#]&]],{n,100}]
  • PARI
    A304327(n) = sumdiv(n,d,issquarefree(n/d)*((1==d)||ispower(d))); \\ Antti Karttunen, Jul 29 2018

Extensions

More terms from Antti Karttunen, Jul 29 2018

A304817 Number of divisors of n that are either 1 or not a perfect power.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 5, 2, 4, 4, 2, 2, 5, 2, 5, 4, 4, 2, 6, 2, 4, 2, 5, 2, 8, 2, 2, 4, 4, 4, 6, 2, 4, 4, 6, 2, 8, 2, 5, 5, 4, 2, 7, 2, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 11, 2, 4, 5, 2, 4, 8, 2, 5, 4, 8, 2, 8, 2, 4, 5, 5, 4, 8, 2, 7, 2, 4, 2, 11, 4, 4
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

First differs from A183095 at a(80) = 8, A183095(80) = 7.

Examples

			The a(72) = 8 divisors of 72 that are either 1 or not a perfect power are {1, 2, 3, 6, 12, 18, 24, 72}. Missing are {4, 8, 9, 36}.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n,Boole[GCD@@FactorInteger[#][[All,2]]==1]&],{n,100}]
  • PARI
    a(n) = sumdiv(n, d, !ispower(d)); \\ Michel Marcus, May 19 2018

Formula

a(n) = A183096(n) + 1.

A183093 a(n) = number of divisors d of n such that d > 1 and if d = Product_(i) (p_i^e_i) then e_i = 1 for at least one i.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 3, 1, 1, 4, 1, 4, 3, 3, 1, 5, 1, 3, 1, 4, 1, 7, 1, 1, 3, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 4, 4, 3, 1, 6, 1, 4, 3, 4, 1, 5, 3, 5, 3, 3, 1, 10, 1, 3, 4, 1, 3, 7, 1, 4, 3, 7, 1, 6, 1, 3, 4, 4, 3, 7, 1, 6, 1, 3, 1, 10, 3, 3, 3, 5, 1, 10, 3, 4, 3, 3, 3, 7, 1, 4, 4, 5
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

a(n) = number of non-powerful divisors d of n where powerful numbers are numbers of the form A001694(m) for m >= 2.
Sequence is not the same as A183096: a(72) = 6, A183096(72) = 7.

Examples

			For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 4.
		

Crossrefs

Programs

  • Mathematica
    nonpowQ[n_] := Min[FactorInteger[n][[;;, 2]]] == 1; a[n_] := DivisorSum[n, 1 &, # > 1 && nonpowQ[#] &]; Array[a, 100] (* Amiram Eldar, Jan 30 2025 *)
  • PARI
    a(n) = sumdiv(n, d, d > 1 && vecmin(factor(d)[, 2]) == 1); \\ Amiram Eldar, Jan 30 2025
  • Scheme
    (define (A183093 n) (- (A000005 n) (A005361 n))) ;; Antti Karttunen, Nov 23 2017
    

Formula

a(n) = A000005(n) - A005361(n) = A183095(n) - 1.
a(1) = 0, a(p) = 1, a(pq) = 3, a(pq...z) = 2^k - 1, a(p^k) = 1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Sum_{k=1..n} a(k) ~ n*(log(n) + 2*gamma - zeta(2)*zeta(3)/zeta(6) - 1), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 30 2025

Extensions

Name corrected by Amiram Eldar, Jan 30 2025

A293524 a(n) = Product_{d|n, d>1} prime(A052409(d)).

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 2, 30, 6, 8, 2, 48, 2, 8, 8, 210, 2, 48, 2, 48, 8, 8, 2, 480, 6, 8, 30, 48, 2, 128, 2, 2310, 8, 8, 8, 864, 2, 8, 8, 480, 2, 128, 2, 48, 48, 8, 2, 6720, 6, 48, 8, 48, 2, 480, 8, 480, 8, 8, 2, 3072, 2, 8, 48, 30030, 8, 128, 2, 48, 8, 128, 2, 17280, 2, 8, 48, 48, 8, 128, 2, 6720, 210, 8, 2, 3072, 8, 8, 8, 480
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Crossrefs

Programs

  • PARI
    A293524(n) = { my(m=1,e); fordiv(n,d, if(d>1, e = ispower(d); if(!e, m += m, m *= prime(e)))); m; };

Formula

a(n) = Product_{d|n, d>1} A000040(A052409(d)).
Other identities. For all n >= 1:
A001222(a(n)) = A032741(n).
A007814(a(n)) = A183096(n).
A064989(a(n)) = A294875(n).

A294873 a(n) = Product_{d|n, d>1, d = x^(2k-1) for some maximal k >= 1} prime(k).

Original entry on oeis.org

1, 2, 2, 2, 2, 8, 2, 6, 2, 8, 2, 16, 2, 8, 8, 6, 2, 16, 2, 16, 8, 8, 2, 96, 2, 8, 6, 16, 2, 128, 2, 30, 8, 8, 8, 32, 2, 8, 8, 96, 2, 128, 2, 16, 16, 8, 2, 192, 2, 16, 8, 16, 2, 96, 8, 96, 8, 8, 2, 1024, 2, 8, 16, 30, 8, 128, 2, 16, 8, 128, 2, 384, 2, 8, 16, 16, 8, 128, 2, 192, 6, 8, 2, 1024, 8, 8, 8, 96, 2, 1024, 8, 16, 8, 8, 8, 1920, 2, 16, 16, 32, 2, 128, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Crossrefs

Programs

  • PARI
    A294873(n) = { my(m=1,e); fordiv(n,d, if(d>1, e = ispower(d); if(!e, m += m, if((e>1)&&(e%2), m *= prime((e+1)/2))))); m; };

Formula

a(n) = Product_{d|n, d>1, r = A052409(d) is odd} A000040((r+1)/2).
Other identities. For all n >= 1:
A001222(a(n)) = A056595(n).
A007814(a(n)) = A183096(n).

A304649 Number of divisors d|n such that neither d nor n/d is a perfect power greater than 1.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 0, 1, 4, 2, 4, 2, 4, 4, 0, 2, 4, 2, 4, 4, 4, 2, 4, 1, 4, 0, 4, 2, 8, 2, 0, 4, 4, 4, 5, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 10, 2, 4, 4, 0, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 4, 0, 4, 2, 10, 4, 4, 4, 4
Offset: 1

Views

Author

Gus Wiseman, May 15 2018

Keywords

Examples

			The a(36) = 5 ways to write 36 as a product of two numbers that are not perfect powers greater than 1 are 2*18, 3*12, 6*6, 12*3, 18*2.
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    sradQ[n_]:=GCD@@FactorInteger[n][[All,2]]===1;
    Table[Length@Select[Divisors[n],sradQ[n/#]&&sradQ[#]&],{n,nn}]
  • PARI
    a(n) = sumdiv(n, d, !ispower(d) && !ispower(n/d)); \\ Michel Marcus, May 17 2018

A304650 Number of ways to write n as a product of two positive integers, neither of which is a perfect power.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 0, 1, 2, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2, 2, 2, 0, 2, 1, 2, 0, 2, 0, 6, 0, 0, 2, 2, 2, 5, 0, 2, 2, 2, 0, 6, 0, 2, 2, 2, 0, 2, 1, 2, 2, 2, 0, 2, 2, 2, 2, 2, 0, 8, 0, 2, 2, 0, 2, 6, 0, 2, 2, 6, 0, 4, 0, 2, 2, 2, 2, 6, 0, 2, 0, 2, 0, 8, 2, 2, 2, 2, 0, 8, 2, 2, 2, 2, 2, 2, 0, 2
Offset: 1

Views

Author

Gus Wiseman, May 15 2018

Keywords

Examples

			The a(60) = 8 ways to write 60 as a product of two numbers, neither of which is a perfect power, are 2*30, 3*20, 5*12, 6*10, 10*6, 12*5, 20*3, 30*2.
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]===1];
    Table[Length[Select[Divisors[n],radQ[#]&&radQ[n/#]&]],{n,100}]
  • PARI
    ispow(n) = (n==1) || ispower(n);
    a(n) = sumdiv(n, d, !ispow(d) && !ispow(n/d)); \\ Michel Marcus, May 17 2018
Showing 1-8 of 8 results.