A183156 The number T(n) of isometries of all subspaces of the finite metric space {1,2,...,n} (as a subspace of the reals with the Euclidean metric).
1, 2, 7, 22, 59, 142, 319, 686, 1435, 2950, 5999, 12118, 24379, 48926, 98047, 196318, 392891, 786070, 1572463, 3145286, 6290971, 12582382, 25165247, 50331022, 100662619, 201325862, 402652399, 805305526, 1610611835, 3221224510, 6442449919, 12884900798
Offset: 0
Keywords
Examples
T(2) = 7 because there are exactly 7 partial isometries (on a 2-chain), namely: empty map; 1-->1; 1-->2; 2-->1; 2-->2; (1,2)-->(1,2); (1,2)-->(2,1) - the mappings are coordinate-wise.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. Kehinde and A. Umar, On the semigroup of partial isometries of a finite chain, arXiv:1101.2558 [math.GR], 2011.
- Eric Weisstein's World of Mathematics, Bishop Graph
- Eric Weisstein's World of Mathematics, Clique
- Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-2).
Crossrefs
Programs
-
Magma
[3*2^(n+1)-(n+2)^2-1: n in [0..33]]; // Vincenzo Librandi, Oct 11 2017
-
Mathematica
LinearRecurrence[{5, -9, 7, -2}, {1, 2, 7, 22}, 40] (* Vincenzo Librandi, Oct 11 2017 *) Table[3 2^(n + 1) - (n + 2)^2 - 1, {n, 0, 30}] (* Vincenzo Librandi, Oct 11 2017 *) LinearRecurrence[{5, -9, 7, -2}, {2, 7, 22, 59}, {0, 20}] (* Eric W. Weisstein, Nov 29 2017 *) CoefficientList[Series[(1 - 3 x + 6 x^2 - 2 x^3)/((-1 + x)^3 (-1 + 2 x)), {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
-
PARI
for(n=0,33,print1(3*(2^(n+1))-(n+2)^2-1,", "))
Formula
T(n) = 3*2^(n+1) - (n+2)^2 - 1, (n >= 0).
G.f.: (1 - 3*x + 6*x^2 - 2*x^3) / ( (2*x - 1)*(x - 1)^3 ). - R. J. Mathar, Jul 03 2011
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4). - Eric W. Weisstein, Nov 29 2017
a(n) = 2*a(n-1) + n^2 - 1. - Kritsada Moomuang, Oct 25 2019
Extensions
Renamed the sequence using more standard and widely-used terminology, James Mitchell, May 19 2012
Comments