cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183156 The number T(n) of isometries of all subspaces of the finite metric space {1,2,...,n} (as a subspace of the reals with the Euclidean metric).

Original entry on oeis.org

1, 2, 7, 22, 59, 142, 319, 686, 1435, 2950, 5999, 12118, 24379, 48926, 98047, 196318, 392891, 786070, 1572463, 3145286, 6290971, 12582382, 25165247, 50331022, 100662619, 201325862, 402652399, 805305526, 1610611835, 3221224510, 6442449919, 12884900798
Offset: 0

Views

Author

Abdullahi Umar, Dec 28 2010

Keywords

Comments

Also the number of (not necessarily maximal) cliques in the n X n bishop graph. - Eric W. Weisstein, Jun 04 2017

Examples

			T(2) = 7 because there are exactly 7 partial isometries (on a 2-chain), namely: empty map; 1-->1; 1-->2; 2-->1; 2-->2; (1,2)-->(1,2); (1,2)-->(2,1) - the mappings are coordinate-wise.
		

Crossrefs

Row sums of triangles A183157, A183158.
Cf. A295909 (cliques in the n X n black bishop graph).
Cf. A295910 (cliques in the n X n white bishop graph).

Programs

  • Magma
    [3*2^(n+1)-(n+2)^2-1: n in [0..33]]; // Vincenzo Librandi, Oct 11 2017
  • Mathematica
    LinearRecurrence[{5, -9, 7, -2}, {1, 2, 7, 22}, 40] (* Vincenzo Librandi, Oct 11 2017 *)
    Table[3 2^(n + 1) - (n + 2)^2 - 1, {n, 0, 30}] (* Vincenzo Librandi, Oct 11 2017 *)
    LinearRecurrence[{5, -9, 7, -2}, {2, 7, 22, 59}, {0, 20}] (* Eric W. Weisstein, Nov 29 2017 *)
    CoefficientList[Series[(1 - 3 x + 6 x^2 - 2 x^3)/((-1 + x)^3 (-1 + 2 x)), {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
  • PARI
    for(n=0,33,print1(3*(2^(n+1))-(n+2)^2-1,", "))
    

Formula

T(n) = 3*2^(n+1) - (n+2)^2 - 1, (n >= 0).
G.f.: (1 - 3*x + 6*x^2 - 2*x^3) / ( (2*x - 1)*(x - 1)^3 ). - R. J. Mathar, Jul 03 2011
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4). - Eric W. Weisstein, Nov 29 2017
a(n) = A295909(n) + A295910(n) for n > 1. - Eric W. Weisstein, Nov 29 2017
a(n) = 2*a(n-1) + n^2 - 1. - Kritsada Moomuang, Oct 25 2019

Extensions

Renamed the sequence using more standard and widely-used terminology, James Mitchell, May 19 2012