A183207 Termwise products of the natural numbers and odd integers repeated.
1, 2, 9, 12, 25, 30, 49, 56, 81, 90, 121, 132, 169, 182, 225, 240, 289, 306, 361, 380, 441, 462, 529, 552, 625, 650, 729, 756, 841, 870, 961, 992, 1089, 1122, 1225, 1260, 1369, 1406, 1521, 1560, 1681, 1722, 1849, 1892, 2025
Offset: 1
Examples
a(4) = 4*3 = 12.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
- Scott R. Shannon, Image for n = 3. In this and other images the center of each circle of shown as a white dot.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Scott R. Shannon, Image for n = 8.
Programs
-
Magma
I:=[1,2,9,12,25]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Feb 23 2014
-
Mathematica
a[n_] := n (2 Floor[(n - 1)/2] + 1); Array[a, 45] (* Robert G. Wilson v, Feb 11 2011 *) CoefficientList[Series[(-1 - x - 5 x^2 - x^3)/((1 + x)^2 (x - 1)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 23 2014 *)
-
PARI
a(n) = n^2-n*(1+(-1)^n)/2;
Formula
Termwise products of (1, 2, 3, 4, 5, 6, 7, 8...) and (1, 1, 3, 3, 5, 5, 7, 7,...).
From R. J. Mathar, Feb 12 2011: (Start)
G.f.: x*( -1-x-5*x^2-x^3 ) / ( (1+x)^2*(x-1)^3 ).
a(n) = n^2-n*(1+(-1)^n)/2. (End)
Sum_{n>=1} 1/a(n) = Pi^2/8 + log(2). - Amiram Eldar, Mar 15 2024
Comments