A093005 a(n) = n * ceiling(n/2).
1, 2, 6, 8, 15, 18, 28, 32, 45, 50, 66, 72, 91, 98, 120, 128, 153, 162, 190, 200, 231, 242, 276, 288, 325, 338, 378, 392, 435, 450, 496, 512, 561, 578, 630, 648, 703, 722, 780, 800, 861, 882, 946, 968, 1035, 1058, 1128, 1152, 1225, 1250, 1326, 1352, 1431, 1458
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Torleiv Kløve, Linear recurring sequences in boolean rings, Math. Scand., 33 (1973), 5-12.
- Torleiv Kløve, Linear recurring sequences in boolean rings, Math. Scand., 33 (1973), 5-12. (Annotated scanned copy)
- Luc Rousseau, Illustration, a(n) viewed as a number of regions in an arrangement of lines / of circles.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[n*(n+(n mod 2))/2: n in [1..70]]; // G. C. Greubel, Mar 14 2024
-
Maple
A093005:=n->n*ceil(n/2); seq(A093005(n), n=1..100); # Wesley Ivan Hurt, Nov 14 2013
-
Mathematica
a[n_Integer] := n*Floor[(n + 1)/2] (* Olivier Gérard, Jun 21 2007 *) Table[n*Ceiling[n/2],{n,60}] (* or *) LinearRecurrence[{1,2,-2,-1,1},{1,2,6,8,15},60] (* Harvey P. Dale, May 08 2014 *)
-
PARI
a(n)=(n+1)\2*n \\ Charles R Greathouse IV, Jun 11 2015
-
Python
for n in range(1,55): print(n*((n+1)//2), end=",") # Alex Ratushnyak, Apr 26 2012
-
SageMath
[n*(n +(n%2))/2 for n in range(1,71)] # G. C. Greubel, Mar 14 2024
Formula
a(n) = n*floor((n+1)/2).
a(n) = n*A008619(n).
a(2*n-1) = n*(2*n-1), a(2*n) = 2*n^2.
From Paul Barry, Jun 29 2006: (Start)
G.f.: x*(1+x+2*x^2)/((1+x)^2*(1-x)^3).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = n*((2*n+1) - (-1)^n)/4. (End)
a(n) = n * ceiling(n/2). - Wesley Ivan Hurt, Nov 14 2013
E.g.f.: (1/2)*x*( (x+2)*cosh(x) + (x+1)*sinh(x) ). - G. C. Greubel, Mar 14 2024
Sum_{n>=1} 1/a(n) = Pi^2/12 + 2*log(2). - Amiram Eldar, Mar 15 2024
Extensions
Corrected and extended by Joshua Zucker, May 08 2006
New name from Alex Ratushnyak, Apr 26 2012
New name from Wesley Ivan Hurt, Nov 14 2013
Comments