A183240 Sums of the squares of multinomial coefficients.
1, 1, 5, 46, 773, 19426, 708062, 34740805, 2230260741, 180713279386, 18085215373130, 2188499311357525, 315204533416762046, 53270712928769375885, 10441561861586014363349, 2349364090881443819316871, 601444438364480313663234821, 173817677082622796179263021770
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 5*x^2/2!^2 + 46*x^3/3!^2 + 773*x^4/4!^2 +... A(x) = 1/((1-x)*(1-x^2/2!^2)*(1-x^3/3!^2)*(1-x^4/4!^2)*...). ... After the initial term a(0)=1, the next several terms are a(1) = 1^2 = 1, a(2) = 1^2 + 2^2 = 5, a(3) = 1^2 + 3^2 + 6^2 = 46, a(4) = 1^2 + 4^2 + 6^2 + 12^2 + 24^2 = 773, a(5) = 1^2 + 5^2 + 10^2 + 20^2 + 30^2 + 60^2 + 120^2 = 19426, and continue with the sums of squares of the terms in triangle A036038.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..250
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n-i, min(n-i, i))/i!^2+b(n, i-1)) end: a:= n-> n!^2*b(n$2): seq(a(n), n=0..21); # Alois P. Heinz, Sep 11 2019
-
Mathematica
t=Table[Apply[Multinomial, Reverse[Sort[IntegerPartitions[i], Length[#1] > Length[#2] &]], {1}], {i, 30}]^2; Plus@@@t (* From Tony D. Noe *) b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n - i, Min[n - i, i]]/i!^2 + b[n, i - 1]]; a[n_] := n!^2 b[n, n]; a /@ Range[0, 21] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
-
PARI
{a(n)=n!^2*polcoeff(1/prod(k=1,n,1-x^k/k!^2 +x*O(x^n)),n)}
Formula
G.f.: Sum_{n>=0} a(n)*x^n/n!^2 = Product_{n>=1} 1/(1-x^n/n!^2).
a(n) ~ c * (n!)^2, where c = Product_{k>=2} 1/(1-1/(k!)^2) = 1.37391178018464563291052028168404977854977270679629932106310942272080844... . - Vaclav Kotesovec, Feb 19 2015
Extensions
Terms following a(7) computed by T. D. Noe.
Comments