A183575 a(n) = n - 1 + ceiling((n^2-2)/2); complement of A183574.
0, 2, 6, 10, 16, 22, 30, 38, 48, 58, 70, 82, 96, 110, 126, 142, 160, 178, 198, 218, 240, 262, 286, 310, 336, 362, 390, 418, 448, 478, 510, 542, 576, 610, 646, 682, 720, 758, 798, 838, 880, 922, 966, 1010, 1056, 1102, 1150, 1198, 1248, 1298, 1350, 1402, 1456, 1510, 1566, 1622, 1680, 1738, 1798, 1858, 1920, 1982, 2046, 2110, 2176, 2242, 2310, 2378, 2448, 2518
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Graph Circumference.
- Eric Weisstein's World of Mathematics, Stacked Book Graph.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Cf. A183574 (complement).
Programs
-
Mathematica
Table[Ceiling[n^2/2 - 1] + n - 1, {n, 20}] (* Eric W. Weisstein, May 18 2017 *) Table[(2 n (n + 2) - 7 - (-1)^n)/4, {n, 20}] (* Eric W. Weisstein, May 18 2017 *) Table[If[Mod[n, 2] == 0, n^2 + 2 n - 4, (n + 3) (n - 1)]/2, {n, 20}] (* Eric W. Weisstein, May 18 2017 *) LinearRecurrence[{2,0,-2,1},{0,2,6,10},80] (* Harvey P. Dale, Feb 19 2021 *)
-
PARI
concat(0, Vec(2*x*(1 + x - x^2) / ((1 - x)^3*(1 + x)) + O(x^60))) \\ Colin Barker, Dec 07 2017
Formula
a(n) = n - 1 + ceiling(n^2/2-1).
From Colin Barker, Dec 07 2017: (Start)
G.f.: 2*x^2*(1 + x - x^2) / ((1 - x)^3*(1 + x)).
a(n) = (n^2 + 2*n - 4)/2 for n even.
a(n) = (n^2 + 2*n - 3)/2 for n odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 4.
(End)
Sum_{n>=2} 1/a(n) = 7/8 + tan(sqrt(5)*Pi/2)*Pi/(2*sqrt(5)). - Amiram Eldar, Sep 16 2022
E.g.f.: (4 + (x^2 + 3*x - 4)*cosh(x) + (x^2 + 3*x - 3)*sinh(x))/2. - Stefano Spezia, Sep 05 2023
Extensions
Description corrected by Eric W. Weisstein, May 18 2017
a(1)=0 inserted by Amiram Eldar, Sep 16 2022
Comments