A184418 Convolution square of A040001.
1, 2, 5, 6, 10, 10, 15, 14, 20, 18, 25, 22, 30, 26, 35, 30, 40, 34, 45, 38, 50, 42, 55, 46, 60, 50, 65, 54, 70, 58, 75, 62, 80, 66, 85, 70, 90, 74, 95, 78, 100, 82, 105, 86, 110, 90, 115, 94, 120, 98, 125, 102, 130, 106, 135, 110, 140, 114, 145, 118, 150, 122, 155, 126
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 5*x^2 + 6*x^3 + 10*x^4 + 10*x^5 + 15*x^6 + 14*x^7 + 20*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Michael Somos, Rational Function Multiplicative Coefficients
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Programs
-
Magma
I:=[2,5,6,10]; [1] cat [n le 4 select I[n] else 2*Self(n-2) - Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 14 2018
-
Mathematica
LinearRecurrence[{0,2,0,-1},{1,2,5,6,10},80] (* Harvey P. Dale, Jul 03 2017 *)
-
PARI
{a(n) = (n==0) + n * ([5/2, 2] [n%2 + 1])};
-
PARI
{a(n) = if( n==0, 1, sign(n) * polcoeff( (1 + x + x^2)^2 / (1 - x^2)^2 + x * O(x^abs(n)), abs(n)))};
Formula
G.f.: (1 + x + x^2)^2 / (1 - x^2)^2 = 1 + x * (x + 2) * (2*x + 1) / (1 - x^2)^2. a(-n) = -a(n) except a(0) = 2.
Euler transform of length 3 sequence [2, 2, -2].
a(n) = 2 * b(n) where b() is multiplicative with b(2^e) = 5 * 2^(e-2) if e>0, b(p^e) = p^e if p>2.
a(2*n + 1) = 4*n + 2, a(2*n) = 5*n except a(0) = 2.
a(n) = (9+(-1)^n)*n/4 = (n/2)*A010710(n+1) for n>0. - Bruno Berselli, Mar 24 2011