cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184418 Convolution square of A040001.

Original entry on oeis.org

1, 2, 5, 6, 10, 10, 15, 14, 20, 18, 25, 22, 30, 26, 35, 30, 40, 34, 45, 38, 50, 42, 55, 46, 60, 50, 65, 54, 70, 58, 75, 62, 80, 66, 85, 70, 90, 74, 95, 78, 100, 82, 105, 86, 110, 90, 115, 94, 120, 98, 125, 102, 130, 106, 135, 110, 140, 114, 145, 118, 150, 122, 155, 126
Offset: 0

Views

Author

Michael Somos, Feb 14 2011

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 6*x^3 + 10*x^4 + 10*x^5 + 15*x^6 + 14*x^7 + 20*x^8 + ...
		

Programs

  • Magma
    I:=[2,5,6,10]; [1] cat [n le 4 select I[n] else 2*Self(n-2) - Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 14 2018
  • Mathematica
    LinearRecurrence[{0,2,0,-1},{1,2,5,6,10},80] (* Harvey P. Dale, Jul 03 2017 *)
  • PARI
    {a(n) = (n==0) + n * ([5/2, 2] [n%2 + 1])};
    
  • PARI
    {a(n) = if( n==0, 1, sign(n) * polcoeff( (1 + x + x^2)^2 / (1 - x^2)^2 + x * O(x^abs(n)), abs(n)))};
    

Formula

G.f.: (1 + x + x^2)^2 / (1 - x^2)^2 = 1 + x * (x + 2) * (2*x + 1) / (1 - x^2)^2. a(-n) = -a(n) except a(0) = 2.
Euler transform of length 3 sequence [2, 2, -2].
a(n) = 2 * b(n) where b() is multiplicative with b(2^e) = 5 * 2^(e-2) if e>0, b(p^e) = p^e if p>2.
a(2*n + 1) = 4*n + 2, a(2*n) = 5*n except a(0) = 2.
a(n) = (9+(-1)^n)*n/4 = (n/2)*A010710(n+1) for n>0. - Bruno Berselli, Mar 24 2011