cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184535 a(n) = floor(3/5 * n^2), with a(1)=1.

Original entry on oeis.org

1, 2, 5, 9, 15, 21, 29, 38, 48, 60, 72, 86, 101, 117, 135, 153, 173, 194, 216, 240, 264, 290, 317, 345, 375, 405, 437, 470, 504, 540, 576, 614, 653, 693, 735, 777, 821, 866, 912, 960, 1008, 1058, 1109, 1161, 1215, 1269, 1325, 1382, 1440, 1500, 1560, 1622, 1685, 1749, 1815, 1881, 1949, 2018, 2088, 2160, 2232, 2306, 2381
Offset: 1

Views

Author

Clark Kimberling, Jan 16 2011

Keywords

Comments

Apart from the initial term this is the elliptic troublemaker sequence R_n(2,5) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences see the cross references below. - Peter Bala, Aug 08 2013

Crossrefs

Elliptic troublemaker sequences: A000212 (= R_n(1,3) = R_n(2,3)), A002620 (= R_n(1,2)), A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A033436 (= R_n(1,4) = R_n(3,4)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A184535 (= R_n(2,5) = R_n(3,5)).

Programs

  • GAP
    Concatenation([1], List([2..10^3], n->Int(3/5 * n^2))); # Muniru A Asiru, Feb 04 2018
    
  • Maple
    1,seq(floor(3/5*n^2), n=2..10^3); # Muniru A Asiru, Feb 04 2018
  • Mathematica
    p[n_] := FractionalPart[(n^3 + 5)^(1/3)]; q[n_] := Floor[1/p[n]]; Table[q[n], {n, 1, 120}]
    Join[{1},LinearRecurrence[{2, -1, 0, 0, 1, -2, 1},{2, 5, 9, 15, 21, 29, 38},62]] (* Ray Chandler, Aug 31 2015 *)
  • PARI
    a(n) = if(n==1, 1, 3*n^2\5); \\ Altug Alkan, Mar 03 2018
    
  • Python
    def A184535(n): return 3*n**2//5 if n>1 else 1 # Chai Wah Wu, Aug 04 2025

Formula

a(n) = floor(1/{(5+n^3)^(1/3)}), where {}=fractional part.
a(n)= +2*a(n-1) -a(n-2) +a(n-5) -2*a(n-6) +a(n-7), for n>8, with g.f. 1-x^2*(1+x)*(2*x^2-x+2)/ ((x^4+x^3+x^2+x+1) *(x-1)^3), so a(n) is (3n^2-2)/5 plus a fifth of A164116 for n>1. [Bruno Berselli, Jan 30 2011. See the following Bala's comment.]
From Peter Bala, Aug 08 2013: (Start)
a(n) = floor(3/5*n^2) for n >= 2.
The sequence b(n) := floor(3/5*n^2) - 3/5*n^2, n >= 1, is periodic with period [-3/5, -2/5, -2/5, -3/5, 0] of length 5. The generating function and recurrence equation given above easily follow from these observations.
The sequence c(n) := 5/2*( (2*n/5 - floor(2*n/5))^2 - (2*n/5 - floor(2*n/5)) ) is also periodic with period 5, and calculation shows it has the same period as the sequence b(n). Thus b(n) = c(n), yielding the alternative formula a(n) = 3/5*n^2 + 5/2*( (2*n/5 - floor(2*n/5))^2 - (2*n/5 - floor(2*n/5)) ), which is one of the formulas for the elliptic troublemaker sequence R_n(2,5) given in Stange (see Section 7, equation (21)). (End)

Extensions

Better name from Peter Bala, Aug 08 2013