A184674 a(n) = n+floor((n/2-1/(2*n))^2); complement of A184675.
1, 2, 4, 7, 10, 14, 18, 23, 28, 34, 40, 47, 54, 62, 70, 79, 88, 98, 108, 119, 130, 142, 154, 167, 180, 194, 208, 223, 238, 254, 270, 287, 304, 322, 340, 359, 378, 398, 418, 439, 460, 482, 504, 527, 550, 574, 598, 623, 648, 674, 700, 727, 754, 782, 810, 839, 868, 898, 928, 959, 990, 1022, 1054, 1087, 1120, 1154, 1188, 1223, 1258, 1294, 1330, 1367, 1404
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
[n+Floor((n/2-1/(2*n))^2): n in [1..80]]; // Vincenzo Librandi, Jul 10 2011
-
Maple
A184674:=n->n+floor((n/2-1/(2*n))^2): seq(A184674(n), n=1..100); # Wesley Ivan Hurt, Feb 22 2017
-
Mathematica
a[n_]:=n+Floor[(n/2-1/(2n))^2]; b[n_]:=n+Floor[n^(1/2)+(n+1)^(1/2)]; Table[a[n],{n,1,120}] (* A184674 *) Table[b[n],{n,1,120}] (* A184675 *) FindLinearRecurrence[Table[a[n],{n,1,120}]] Join[{1},LinearRecurrence[{2,0,-2,1},{2,4,7,10},72]] (* Ray Chandler, Aug 02 2015 *)
Formula
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>=6.
G.f.: x*(x^4 - x^3 - 1)/((x + 1)*(x - 1)^3). - Álvar Ibeas, Jul 20 2021
a(n) = (2*n^2 + 8*n - 9 + (-1)^n)/8 for n > 1. - Stefano Spezia, Apr 04 2023
Comments