cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A006822 Number of connected regular graphs of degree 6 (or sextic graphs) with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 4, 21, 266, 7849, 367860, 21609300, 1470293675, 113314233808, 9799685588936, 945095823831036, 101114579937187980, 11945375659139626688, 1551593789610509806552, 220716215902792573134799, 34259321384370620122314325, 5782740798229825207562109439
Offset: 0

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 648.
  • I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
6-regular simple graphs: this sequence (connected), A165656 (disconnected), A165627 (not necessarily connected).
Connected regular graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), this sequence (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 6-regular simple graphs with girth at least g: this sequence (g=3), A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: A184963 (g=3), A184964 (g=4). (End)

Formula

a(n) = A184963(n) + A058276(n).
a(n) = A165627(n) - A165656(n).
This sequence is the inverse Euler transformation of A165627.

Extensions

a(16) and a(17) appended, from running M. Meringer's GENREG at U. Newcastle for 41 processor days and 3.5 processor years, by Jason Kimberley, Sep 04 2009 and Nov 13 2009.
Terms a(18)-a(24), due to the extension of A165627 by Andrew Howroyd, from Jason Kimberley, Mar 12 2020

A014377 Number of connected regular graphs of degree 7 with 2n nodes.

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 1547, 21609301, 733351105934, 42700033549946250, 4073194598236125132578, 613969628444792223002008202, 141515621596238755266884806115631
Offset: 0

Views

Author

Keywords

Examples

			a(0)=1 because the null graph (with no vertices) is vacuously 7-regular and connected.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 648.
  • I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.

Crossrefs

Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
7-regular simple graphs: this sequence (connected), A165877 (disconnected), A165628 (not necessarily connected).
Connected regular simple graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), this sequence (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 7-regular simple graphs with girth at least g: this sequence (g=3), A181153 (g=4).
Connected 7-regular simple graphs with girth exactly g: A184963 (g=3), A184964 (g=4), A184965 (g=5). (End)

Formula

a(n) = A184973(n) + A181153(n).
a(n) = A165628(n) - A165877(n).
This sequence is the inverse Euler transformation of A165628.

Extensions

Added another term from Meringer's page. Dmitry Kamenetsky, Jul 28 2009
Term a(8) (on Meringer's page) was found from running Meringer's GENREG for 325 processor days at U. Newcastle by Jason Kimberley, Oct 02 2009
a(9)-a(11) from Andrew Howroyd, Mar 13 2020
a(12) from Andrew Howroyd, May 19 2020

A058276 Number of connected 6-regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 9, 6, 267, 3727, 483012, 69823723, 14836130862
Offset: 0

Views

Author

N. J. A. Sloane, Dec 17 2000

Keywords

Comments

The null graph on 0 vertices is vacuously connected and 6-regular; since it is acyclic, it has infinite girth. - Jason Kimberley, Jan 30 2011
Other than at n=0, this sequence first differs from A184964 at n = A054760(6,5) = 40.

Crossrefs

6-regular simple graphs with girth at least 4: this sequence (connected), A185264 (disconnected), A185364 (not necessarily connected).
Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: A185114 (k=2), A014371 (k=3), A033886 (k=4), A058275 (k=5), this sequence (k=6), A181153 (k=7), A181154 (k=8), A181170 (k=9).
Connected 6-regular simple graphs with girth at least g: A006822 (g=3), this sequence (g=4).
Connected 6-regular simple graphs with girth exactly g: A184963 (g=3), A184964 (g=4).

Formula

a(n) = A014377(n) - A184963(n).

Extensions

Terms a(19), a(20), and a(21), were appended, from running Meringer's GENREG at U. Ncle. for 51 processor days, by Jason Kimberley on Dec 11 2009
a(22) was appended, from running Meringer's GENREG at U. Ncle. for 1620 processor days, by Jason Kimberley on Dec 10 2011

A181153 Number of connected 7-regular simple graphs on 2n vertices with girth at least 4.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 8, 741, 2887493
Offset: 0

Views

Author

Jason Kimberley, last week of Jan 2011

Keywords

Comments

a(10) was computed by the author in 3 hours using GENREG on Dec 02 2009.
a(11) was computed by the author using GENREG over 45.7 processor days at U. Newcastle from Jan 25 to 27 2011.

Examples

			The a(0)=1 null graph is vacuously 7-regular and connected; since it is acyclic then it has infinite girth.
The a(7)=1 graph is the complete bipartite graph K_{7,7} on 14 vertices.
The a(8)=1 graph has girth 4, automorphism group of order 80640, and the following adjacency lists:
01 : 02 03 04 05 06 07 08
02 : 01 09 10 11 12 13 14
03 : 01 09 10 11 12 13 15
04 : 01 09 10 11 12 14 15
05 : 01 09 10 11 13 14 15
06 : 01 09 10 12 13 14 15
07 : 01 09 11 12 13 14 15
08 : 01 10 11 12 13 14 15
09 : 02 03 04 05 06 07 16
10 : 02 03 04 05 06 08 16
11 : 02 03 04 05 07 08 16
12 : 02 03 04 06 07 08 16
13 : 02 03 05 06 07 08 16
14 : 02 04 05 06 07 08 16
15 : 03 04 05 06 07 08 16
16 : 09 10 11 12 13 14 15
		

References

  • M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146.

Crossrefs

7-regular simple graphs with girth at least 4: this sequence (connected), A185274 (disconnected), A185374 (not necessarily connected).
Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: A185114 (k=2), A014371 (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), this sequence (k=7), A181154 (k=8), A181170 (k=9).
Connected 7-regular simple graphs with girth at least g: A014377 (g=3), this sequence (g=4).
Connected 7-regular simple graphs with girth exactly g: A184963 (g=3), A184964 (g=4).

A184943 Number of connected 4-regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 5, 16, 57, 263, 1532, 10747, 87948, 803885, 8020590, 86027734, 983417704, 11913817317, 152352034707, 2050055948375, 28951137255862, 428085461764471
Offset: 0

Views

Author

Jason Kimberley, Jan 25 2011

Keywords

Examples

			a(0)=0 because even though the null graph (on zero vertices) is vacuously 4-regular and connected, since it is acyclic, it has infinite girth.
The a(5)=1 complete graph on 5 vertices is 4-regular; it has 10 edges and 10 triangles.
		

Crossrefs

4-regular simple graphs with girth exactly 3: this sequence (connected), A185043 (disconnected), A185143 (not necessarily connected).
Connected k-regular simple graphs with girth exactly 3: A006923 (k=3), this sequence (k=4), A184953 (k=5), A184963 (k=6), A184973 (k=7), A184983 (k=8), A184993 (k=9).
Connected 4-regular simple graphs with girth at least g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: this sequence (g=3), A184944 (g=4), A184945 (g=5).

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A006820 = A@006820; A033886 = A@033886;
    a[n_] := A006820[[n + 1]] - A033886[[n + 1]];
    a /@ Range[0, 22] (* Jean-François Alcover, Jan 27 2020 *)

Formula

a(n) = A006820(n) - A033886(n).

Extensions

Term a(22) corrected and a(23) appended, due to the correction and extension of A006820 by Andrew Howroyd, from Jason Kimberley, Mar 13 2020

A184953 Number of connected 5-regular (or quintic) simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 1, 3, 59, 7847, 3459376, 2585136287, 2807104844073
Offset: 0

Views

Author

Jason Kimberley, Feb 27 2011

Keywords

Crossrefs

Connected k-regular simple graphs with girth exactly 3: A006923 (k=3), A184943 (k=4), this sequence (k=5), A184963 (k=6), A184973 (k=7), A184983 (k=8), A184993 (k=9).
Connected 5-regular simple graphs with girth at least g: A006821 (g=3), A058275 (g=4).
Connected 5-regular simple graphs with girth exactly g: this sequence (g=3), A184954 (g=4), A184955 (g=5).

Formula

a(n) = A006821(n) - A058275(n).

A184964 Number of connected 6-regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 9, 6, 267, 3727, 483012, 69823723, 14836130862
Offset: 0

Views

Author

Jason Kimberley, Feb 28 2011

Keywords

Comments

Other than at n=0, this sequence first differs from A058276 at n = A054760(6,5) = 40.

Examples

			a(0)=0 because even though the null graph (on zero vertices) is vacuously 6-regular and connected, since it is acyclic, it has infinite girth.
The a(12)=1 graph is the complete bipartite graph K_{6,6}.
		

Crossrefs

Connected k-regular simple graphs with girth exactly 4: A006924 (k=3), A184944 (k=4), A184954 (k=5), this sequence (k=6), A184974 (k=7).
Connected 6-regular simple graphs with girth at least g: A006822 (g=3), A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: A184963 (g=3), this sequence (g=4).

A186733 Triangular array C(n,r) = number of connected r-regular graphs, having girth exactly 3, with n nodes, for 0 <= r < n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 3, 5, 3, 1, 1, 0, 0, 0, 0, 16, 0, 4, 0, 1, 0, 0, 0, 13, 57, 59, 21, 5, 1, 1, 0, 0, 0, 0, 263, 0, 266, 0, 6, 0, 1, 0, 0, 0, 63, 1532, 7847, 7848, 1547, 94, 9, 1, 1, 0, 0, 0, 0, 10747, 0, 367860, 0, 10786
Offset: 1

Views

Author

Jason Kimberley, Mar 26 2012

Keywords

Examples

			01: 0 ;
02: 0, 0 ;
03: 0, 0, 1 ;
04: 0, 0, 0, 1 ;
05: 0, 0, 0, 0, 1 ;
06: 0, 0, 0, 1, 1, 1 ;
07: 0, 0, 0, 0, 2, 0, 1 ;
08: 0, 0, 0, 3, 5, 3, 1, 1 ;
09: 0, 0, 0, 0, 16, 0, 4, 0, 1 ;
10: 0, 0, 0, 13, 57, 59, 21, 5, 1, 1 ;
11: 0, 0, 0, 0, 263, 0, 266, 0, 6, 0, 1 ;
12: 0, 0, 0, 63, 1532, 7847, 7848, 1547, 94, 9, 1, 1 ;
13: 0, 0, 0, 0, 10747, 0, 367860, 0, 10786, 0, 10, 0, 1 ;
14: 0, 0, 0, 399, 87948, 3459376, 21609299, 21609300, 3459386, 88193, 540, 13, 1, 1 ;
15: 0, 0, 0, 0, 803885, 0, 1470293674, 0, 1470293676, 0, 805579, 0, 17, 0, 1 ;
16: 0, 0, 0, 3268, 8020590, 2585136287, 113314233799, 733351105933, 733351105934, 113314233813, 2585136741, 8037796, 4207, 21, 1, 1;
		

Crossrefs

The sum of the n-th row is A186743(n).
Connected k-regular simple graphs with girth exactly 3: this sequence (triangle), A186743 (any k); chosen k: A006923 (k=3), A184943 (k=4), A184953 (k=5), A184963 (k=6), A184973 (k=7), A184983 (k=8), A184993 (k=9).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *at least* g: A068934 (g=3), A186714 (g=4), A186715 (g=5), A186716 (g=6), A186717 (g=7), A186718 (g=8), A186719 (g=9).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *exactly* g: this sequence (g=3), A186734 (g=4).

Formula

C(n,r) = A068934(n,r) - A186714(n,r), noting that A186714 has 0 <= r <= n div 2.

A184960 Irregular triangle C(n,g) read by rows, counting the connected 6-regular simple graphs on n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 4, 21, 266, 7848, 1, 367860, 0, 21609299, 1, 1470293674, 1, 113314233799, 9, 9799685588930, 6
Offset: 7

Views

Author

Jason Kimberley, Feb 24 2011

Keywords

Comments

The first column is for girth exactly 3. The row length sequence starts: 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3. The row length is incremented to g-2 when n reaches A054760(6,g).

Examples

			Triangle begins:
1;
1;
4;
21;
266;
7848, 1;
367860, 0;
21609299, 1;
1470293674, 1;
113314233799, 9;
9799685588930, 6;
?, 267;
?, 3727;
?, 483012;
?, 69823723;
?, 14836130862;
The C(40,5)=1 (see the a-file) graph, the unique (6,5)-cage, is the complement of a Petersen graph inside the Hoffman-Singleton graph [from Brouwer link].
The first known of C(42,5)>=1 graph(s) has automorphism group of order 5040 and these adjacency lists:
1 : 2 3 4 5 6 7
2 : 1 8 9 10 11 12
3 : 1 13 14 15 16 17
4 : 1 18 19 20 21 22
5 : 1 23 24 25 26 27
6 : 1 28 29 30 31 32
7 : 1 33 34 35 36 37
8 : 2 13 18 23 28 38
9 : 2 14 19 24 33 39
10 : 2 15 20 29 34 40
11 : 2 16 25 30 35 41
12 : 2 21 26 31 36 42
13 : 3 8 21 27 34 41
14 : 3 9 26 28 37 40
15 : 3 10 22 25 31 39
16 : 3 11 19 32 36 38
17 : 3 20 23 30 33 42
18 : 4 8 25 32 33 40
19 : 4 9 16 27 29 42
20 : 4 10 17 26 35 38
21 : 4 12 13 30 37 39
22 : 4 15 24 28 36 41
23 : 5 8 17 29 36 39
24 : 5 9 22 30 34 38
25 : 5 11 15 18 37 42
26 : 5 12 14 20 32 41
27 : 5 13 19 31 35 40
28 : 6 8 14 22 35 42
29 : 6 10 19 23 37 41
30 : 6 11 17 21 24 40
31 : 6 12 15 27 33 38
32 : 6 16 18 26 34 39
33 : 7 9 17 18 31 41
34 : 7 10 13 24 32 42
35 : 7 11 20 27 28 39
36 : 7 12 16 22 23 40
37 : 7 14 21 25 29 38
38 : 8 16 20 24 31 37
39 : 9 15 21 23 32 35
40 : 10 14 18 27 30 36
41 : 11 13 22 26 29 33
42 : 12 17 19 25 28 34
		

Crossrefs

Connected 6-regular simple graphs with girth at least g: A184961 (triangle); chosen g: A006822 (g=3), A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184963 (g=3), A184964 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), A184950 (k=5), this sequence (k=6), A184970 (k=7), A184980 (k=8).

Extensions

After approximately 390 processor days of computation with genreg, C(41,5)=0.

A184961 Irregular triangle C(n,g) read by rows, counting the connected 6-regular simple graphs on n vertices with girth at least g.

Original entry on oeis.org

1, 1, 4, 21, 266, 7849, 1, 367860, 0, 21609300, 1, 1470293675, 1, 113314233808, 9, 9799685588936, 6
Offset: 7

Views

Author

Jason Kimberley, Jan 10 2012

Keywords

Comments

The first column is for girth at least 3. The row length sequence starts: 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3. The row length is incremented to g-2 when n reaches A054760(6,g).

Examples

			Triangle begins:
1;
1;
4;
21;
266;
7849, 1;
367860, 0;
21609300, 1;
1470293675, 1;
113314233808, 9;
9799685588936, 6;
		

Crossrefs

Connected 6-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A006822 (g=3), A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: A184960 (triangle); chosen g: A184963 (g=3), A184964 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), A184941 (k=4), A184951 (k=5), this sequence (k=6), A184971 (k=7), A184981 (k=8).
Showing 1-10 of 11 results. Next