A006822
Number of connected regular graphs of degree 6 (or sextic graphs) with n nodes.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 1, 1, 4, 21, 266, 7849, 367860, 21609300, 1470293675, 113314233808, 9799685588936, 945095823831036, 101114579937187980, 11945375659139626688, 1551593789610509806552, 220716215902792573134799, 34259321384370620122314325, 5782740798229825207562109439
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 648.
- I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
6-regular simple graphs: this sequence (connected),
A165656 (disconnected),
A165627 (not necessarily connected).
Connected regular graphs
A005177 (any degree),
A068934 (triangular array), specified degree k:
A002851 (k=3),
A006820 (k=4),
A006821 (k=5), this sequence (k=6),
A014377 (k=7),
A014378 (k=8),
A014381 (k=9),
A014382 (k=10),
A014384 (k=11).
Connected 6-regular simple graphs with girth at least g: this sequence (g=3),
A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g:
A184963 (g=3),
A184964 (g=4). (End)
a(16) and a(17) appended, from running M. Meringer's GENREG at U. Newcastle for 41 processor days and 3.5 processor years, by
Jason Kimberley, Sep 04 2009 and Nov 13 2009.
A014377
Number of connected regular graphs of degree 7 with 2n nodes.
Original entry on oeis.org
1, 0, 0, 0, 1, 5, 1547, 21609301, 733351105934, 42700033549946250, 4073194598236125132578, 613969628444792223002008202, 141515621596238755266884806115631
Offset: 0
a(0)=1 because the null graph (with no vertices) is vacuously 7-regular and connected.
- CRC Handbook of Combinatorial Designs, 1996, p. 648.
- I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
7-regular simple graphs: this sequence (connected),
A165877 (disconnected),
A165628 (not necessarily connected).
Connected regular simple graphs
A005177 (any degree),
A068934 (triangular array), specified degree k:
A002851 (k=3),
A006820 (k=4),
A006821 (k=5),
A006822 (k=6), this sequence (k=7),
A014378 (k=8),
A014381 (k=9),
A014382 (k=10),
A014384 (k=11).
Connected 7-regular simple graphs with girth at least g: this sequence (g=3),
A181153 (g=4).
Connected 7-regular simple graphs with girth exactly g:
A184963 (g=3),
A184964 (g=4),
A184965 (g=5). (End)
Term a(8) (on Meringer's page) was found from running Meringer's GENREG for 325 processor days at U. Newcastle by
Jason Kimberley, Oct 02 2009
A006924
Number of connected trivalent graphs with 2n nodes and girth exactly 4.
Original entry on oeis.org
0, 0, 0, 1, 2, 5, 20, 101, 743, 7350, 91763, 1344782, 22160335, 401278984, 7885687604, 166870266608, 3781101495300
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 647.
- Gordon Royle, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Definition corrected to include "connected", and "girth at least 4" minus "girth at least 5" formula provided by
Jason Kimberley, Dec 12 2009
A058276
Number of connected 6-regular simple graphs on n vertices with girth at least 4.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 9, 6, 267, 3727, 483012, 69823723, 14836130862
Offset: 0
6-regular simple graphs with girth at least 4: this sequence (connected),
A185264 (disconnected),
A185364 (not necessarily connected).
Connected 6-regular simple graphs with girth at least g:
A006822 (g=3), this sequence (g=4).
Connected 6-regular simple graphs with girth exactly g:
A184963 (g=3),
A184964 (g=4).
Terms a(19), a(20), and a(21), were appended, from running Meringer's GENREG at U. Ncle. for 51 processor days, by
Jason Kimberley on Dec 11 2009
a(22) was appended, from running Meringer's GENREG at U. Ncle. for 1620 processor days, by
Jason Kimberley on Dec 10 2011
A184944
Number of connected 4-regular simple graphs on n vertices with girth exactly 4.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 12, 31, 220, 1606, 16828, 193900, 2452818, 32670329, 456028472, 6636066091, 100135577616, 1582718909051
Offset: 0
a(0)=0 because even though the null graph (on zero vertices) is vacuously 4-regular and connected, since it is acyclic, it has infinite girth.
The a(8)=1 graph is the complete bipartite graph K_{4,4}.
4-regular simple graphs with girth exactly 4: this sequence (connected),
A185044 (disconnected),
A185144 (not necessarily connected).
Connected 4-regular simple graphs with girth exactly g:
A184943 (g=3), this sequence (g=4),
A184945 (g=5).
a(23) was appended by the author once
A033886(23) was known, Nov 03 2011
A181153
Number of connected 7-regular simple graphs on 2n vertices with girth at least 4.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 1, 1, 8, 741, 2887493
Offset: 0
Jason Kimberley, last week of Jan 2011
The a(0)=1 null graph is vacuously 7-regular and connected; since it is acyclic then it has infinite girth.
The a(7)=1 graph is the complete bipartite graph K_{7,7} on 14 vertices.
The a(8)=1 graph has girth 4, automorphism group of order 80640, and the following adjacency lists:
01 : 02 03 04 05 06 07 08
02 : 01 09 10 11 12 13 14
03 : 01 09 10 11 12 13 15
04 : 01 09 10 11 12 14 15
05 : 01 09 10 11 13 14 15
06 : 01 09 10 12 13 14 15
07 : 01 09 11 12 13 14 15
08 : 01 10 11 12 13 14 15
09 : 02 03 04 05 06 07 16
10 : 02 03 04 05 06 08 16
11 : 02 03 04 05 07 08 16
12 : 02 03 04 06 07 08 16
13 : 02 03 05 06 07 08 16
14 : 02 04 05 06 07 08 16
15 : 03 04 05 06 07 08 16
16 : 09 10 11 12 13 14 15
- M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146.
7-regular simple graphs with girth at least 4: this sequence (connected),
A185274 (disconnected),
A185374 (not necessarily connected).
Connected 7-regular simple graphs with girth at least g:
A014377 (g=3), this sequence (g=4).
Connected 7-regular simple graphs with girth exactly g:
A184963 (g=3),
A184964 (g=4).
A184954
Number of connected 5-regular simple graphs on 2n vertices with girth exactly 4.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 7, 388, 406824, 1125022325, 3813549359274
Offset: 0
Connected 5-regular simple graphs with girth at least g:
A006821 (g=3),
A058275 (g=4).
Connected 5-regular simple graphs with girth exactly g:
A184953 (g=3), this sequence (g=4),
A184955 (g=5).
A184963
Number of connected 6-regular simple graphs on n vertices with girth exactly 3.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 1, 4, 21, 266, 7848, 367860, 21609299, 1470293674, 113314233799, 9799685588930
Offset: 0
a(0)=0 because even though the null graph (on zero vertices) is vacuously 6-regular and connected, since it is acyclic, it has infinite girth.
The a(7)=1 complete graph on 7 vertices is 6-regular; it has 21 edges and 35 triangles.
Connected 6-regular simple graphs with girth at least g:
A006822 (g=3),
A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: this sequence (g=3),
A184964 (g=4).
-
A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
A006822 = A@006822;
A058276 = A@058276;
a[n_] := A006822[[n + 1]] - A058276[[n + 1]];
a /@ Range[0, 17] (* Jean-François Alcover, Jan 27 2020 *)
A185364
Not necessarily connected 6-regular simple graphs on n vertices with girth at least 4.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 9, 6, 267, 3727, 483012, 69823723, 14836130862
Offset: 0
6-regular simple graphs with girth at least 4:
A058276 (connected),
A185264 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs with girth at least 4:
A185314 (any k),
A185304 (triangle); specified degree k:
A008484 (k=2),
A185334 (k=3),
A185344 (k=4),
A185354 (k=5), this sequence (k=6).
A184960
Irregular triangle C(n,g) read by rows, counting the connected 6-regular simple graphs on n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 4, 21, 266, 7848, 1, 367860, 0, 21609299, 1, 1470293674, 1, 113314233799, 9, 9799685588930, 6
Offset: 7
Triangle begins:
1;
1;
4;
21;
266;
7848, 1;
367860, 0;
21609299, 1;
1470293674, 1;
113314233799, 9;
9799685588930, 6;
?, 267;
?, 3727;
?, 483012;
?, 69823723;
?, 14836130862;
The C(40,5)=1 (see the a-file) graph, the unique (6,5)-cage, is the complement of a Petersen graph inside the Hoffman-Singleton graph [from Brouwer link].
The first known of C(42,5)>=1 graph(s) has automorphism group of order 5040 and these adjacency lists:
1 : 2 3 4 5 6 7
2 : 1 8 9 10 11 12
3 : 1 13 14 15 16 17
4 : 1 18 19 20 21 22
5 : 1 23 24 25 26 27
6 : 1 28 29 30 31 32
7 : 1 33 34 35 36 37
8 : 2 13 18 23 28 38
9 : 2 14 19 24 33 39
10 : 2 15 20 29 34 40
11 : 2 16 25 30 35 41
12 : 2 21 26 31 36 42
13 : 3 8 21 27 34 41
14 : 3 9 26 28 37 40
15 : 3 10 22 25 31 39
16 : 3 11 19 32 36 38
17 : 3 20 23 30 33 42
18 : 4 8 25 32 33 40
19 : 4 9 16 27 29 42
20 : 4 10 17 26 35 38
21 : 4 12 13 30 37 39
22 : 4 15 24 28 36 41
23 : 5 8 17 29 36 39
24 : 5 9 22 30 34 38
25 : 5 11 15 18 37 42
26 : 5 12 14 20 32 41
27 : 5 13 19 31 35 40
28 : 6 8 14 22 35 42
29 : 6 10 19 23 37 41
30 : 6 11 17 21 24 40
31 : 6 12 15 27 33 38
32 : 6 16 18 26 34 39
33 : 7 9 17 18 31 41
34 : 7 10 13 24 32 42
35 : 7 11 20 27 28 39
36 : 7 12 16 22 23 40
37 : 7 14 21 25 29 38
38 : 8 16 20 24 31 37
39 : 9 15 21 23 32 35
40 : 10 14 18 27 30 36
41 : 11 13 22 26 29 33
42 : 12 17 19 25 28 34
Connected 6-regular simple graphs with girth at least g:
A184961 (triangle); chosen g:
A006822 (g=3),
A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184963 (g=3),
A184964 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4),
A184950 (k=5), this sequence (k=6),
A184970 (k=7),
A184980 (k=8).
After approximately 390 processor days of computation with genreg, C(41,5)=0.
Showing 1-10 of 12 results.
Comments