A185039 Numbers of the form 9*m^2 + 4*m, m an integer.
0, 5, 13, 28, 44, 69, 93, 128, 160, 205, 245, 300, 348, 413, 469, 544, 608, 693, 765, 860, 940, 1045, 1133, 1248, 1344, 1469, 1573, 1708, 1820, 1965, 2085, 2240, 2368, 2533, 2669, 2844, 2988, 3173, 3325, 3520, 3680, 3885, 4053, 4268, 4444, 4669, 4853, 5088
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares. Discrete Math. 274 (2004), no. 1-3, 9-24. See B(q).
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[0] cat &cat[[9*n^2-4*n,9*n^2+4*n]: n in [1..32]]; // Bruno Berselli, Feb 04 2011
-
Mathematica
CoefficientList[Series[x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3), {x,0,50}], x] (* G. C. Greubel, Jun 20 2017 *) LinearRecurrence[{1,2,-2,-1,1},{0,5,13,28,44},50] (* Harvey P. Dale, Jan 23 2018 *)
-
PARI
x='x+O('x^50); Vec(x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3)) \\ G. C. Greubel, Jun 20 2017
Formula
From Bruno Berselli, Feb 04 2012: (Start)
G.f.: x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3).
Comments