cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A185069 Primes of the form k*6^m +1 with k prime and m an integer.

Original entry on oeis.org

3, 13, 19, 31, 43, 67, 73, 79, 103, 109, 139, 181, 223, 283, 367, 397, 433, 439, 499, 607, 613, 619, 643, 787, 823, 829, 907, 1039, 1087, 1117, 1399, 1447, 1543, 1549, 1579, 1627, 1663, 1693, 1699, 1759, 1867, 1879, 1987, 2083, 2203, 2239, 2377
Offset: 1

Views

Author

Gilbert Mozzo, Feb 18 2011

Keywords

Comments

Companion sequence to A186782.

Examples

			5*6^1+1 = 31 is prime and therefore a term.
7*6^2+1 = 253 is composite and therefore not in the sequence.
17*6^13+1 = 222031798273 is prime and therefore a term (see also its companion in A186782).
		

Crossrefs

Programs

  • Magma
    IsA185069:=function(n); k:=n-1; while k mod 6 eq 0 do k:=(k div 6); end while; return IsPrime(k); end function; [ n: n in PrimesUpTo(3000) | IsA185069(n) ];
  • Mathematica
    Module[{upto=3000,pr},pr=PrimePi[upto]+1;Select[Sort[Flatten[ Table[ k*6^m+1,{k,Prime[Range[pr]]},{m,0,Log[6,(upto-1)/6]}]]],PrimeQ[#] && 185#<=upto&]](* Harvey P. Dale, Dec 30 2018 *)
  • Sage
    def is_A185069(n):
        k = n - 1
        while k % 6 == 0: k //= 6
        return is_prime(k)
    A185069_list = [p for p in primes(3000) if is_A185069(p)] # D. S. McNeil, Feb 20 2011
    

Extensions

Edited by N. J. A. Sloane, Feb 20 2011

A186106 Numbers k such that 3*6^k - 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 9, 12, 13, 24, 41, 71, 140, 189, 190, 630, 713, 1066, 1173, 1202, 1271, 1520, 1606, 2091, 2162, 2547, 6253, 7284, 8676, 10735, 12954, 22042, 32457, 36693, 50715, 72313
Offset: 1

Views

Author

Gilbert Mozzo, Feb 12 2011

Keywords

Comments

a(37) > 1*10^5. - Tyler NeSmith, Oct 03 2022

Crossrefs

See A186104 for the actual primes; cf. A185167.

Programs

  • Mathematica
    lst={}; Do[If[PrimeQ[(3*6^n-1)], Print[n]; AppendTo[lst, n]], {n, 10^5}];
  • PARI
    is(n)=ispseudoprime(3*6^n-1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(17)-a(25) computed by Bruno Berselli, Feb 12 2011 and Feb 21 2011
a(26)-a(33) computed by Gilbert Mozzo, Nov 16 2011 with Mathematica
a(34)-a(35) computed by Gilbert Mozzo, Nov 08 2018 with PARI
a(36) from Tyler NeSmith, Oct 03 2022

A186687 Primes of the form k*6^m - 1, where k is a Mersenne prime (A000668) and m >= 0.

Original entry on oeis.org

2, 17, 41, 107, 251, 647, 761, 1511, 23327, 27431, 139967, 3145721, 30233087, 35551871, 6530347007, 39182082047, 91424858111, 146766805631, 6847552083566591, 153558654482644991, 246511875008397311, 14215144014964850687
Offset: 1

Views

Author

Gilbert Mozzo, Feb 25 2011

Keywords

Comments

Twin of A185167.

Examples

			(2^1279-1)*6^1047-1 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..3000] | IsPrime((2^1279-1)*6^n-1)];
  • Mathematica
    Union[Flatten[Table[Select[p*6^Range[0, 30] - 1, # < 10^20 && PrimeQ[#] &], {p, {3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951}}]]]
Showing 1-3 of 3 results.