cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Gilbert Mozzo

Gilbert Mozzo's wiki page.

Gilbert Mozzo has authored 16 sequences. Here are the ten most recent ones:

A321792 Lesser of twin primes of the form 6*Fibonacci(k)-1.

Original entry on oeis.org

5, 11, 17, 29, 278207, 63661259146337
Offset: 1

Author

Gilbert Mozzo, Jan 12 2019

Keywords

Comments

Corresponding values for k are 1 or 2, 3, 4, 5, 24, 64, ... Also a(7), if it exists, exceeds 6*Fibonacci(150000).

Examples

			17 = 6*Fibonacci(4) - 1 = 6*3 - 1.
		

Crossrefs

Cf. A001359 (lesser of twin primes).

Programs

  • Mathematica
    Select[6*Fibonacci[Range[2,500]]-1,AllTrue[#+{0,2},PrimeQ]&] (* Harvey P. Dale, Apr 18 2025 *)
  • PARI
    for (n=2, 1000, if (ispseudoprime (p=6*fibonacci(n)-1) && ispseudoprime (p+2), print1(p", ")))

A321356 Primes of the form 3*2^k - 25.

Original entry on oeis.org

23, 71, 167, 359, 743, 1511, 12263, 24551, 196583, 393191, 786407, 6291431, 25165799, 1610612711, 6442450919, 25769803751, 103079215079, 206158430183, 6597069766631, 864691128455135207, 27670116110564327399, 221360928884514619367, 1770887431076116955111
Offset: 1

Author

Gilbert Mozzo, Nov 07 2018

Keywords

Crossrefs

Cf. A050414, A321353 (k values).

Programs

  • Mathematica
    Select[3*2^Range[4,100]-25 , PrimeQ] (* Amiram Eldar, Nov 15 2018 *)
  • PARI
    for(n=0,20, if(ispseudoprime(p=3*2^n-25), print1(p, ", ")))

Extensions

More terms from Amiram Eldar, Nov 15 2018

A321353 Numbers k such that 3*2^k - 25 is prime.

Original entry on oeis.org

4, 5, 6, 7, 8, 9, 12, 13, 16, 17, 18, 21, 23, 29, 31, 33, 35, 36, 41, 58, 63, 66, 69, 82, 96, 99, 148, 157, 175, 196, 241, 267, 349, 394, 404, 414, 435, 456, 485, 498, 537, 548, 584, 715, 727, 765, 929, 1007, 1076, 1399, 1619, 1652, 1715, 2758, 3039, 3131, 3773, 3822, 5001
Offset: 1

Author

Gilbert Mozzo, Nov 07 2018

Keywords

Comments

Appears (at least initially) to contain more primes that the analogous sequences for 2^k-1 or 2^k-3. Compare the comment of Paul Bourdelais in A050414.

Examples

			7 is a term, because 3*2^7 - 25 = 359 is prime.
		

Crossrefs

Cf. A050414.

Programs

  • Mathematica
    Select[Range[100], PrimeQ[3 2^# - 25] &]
  • PARI
    for(n=0, 2000, if(ispseudoprime(p=3*2^n-25), print1(n, ", ")));

A209385 Values of the first prefixing digits for Mersenne primes.

Original entry on oeis.org

1, 1, 1, 4, 1, 10, 1, 36, 15, 58, 57, 55, 310, 177, 51, 2389, 973, 532, 1750, 63, 1032, 1240, 3757, 9994, 5854, 12870, 46147, 11923, 17113, 10296, 5977
Offset: 1

Author

Gilbert Mozzo, Mar 07 2012, Mar 18 2012

Keywords

Examples

			For Mersenne 5, i.e., 8191, the first computed prefix is equal to 1 and gives 18191 which is also a prime, so a(5) = 1.
		

Crossrefs

Cf. A000668 (Mersenne primes), A202136.

Programs

  • Mathematica
    pfx[n_] := Module[{w = 10^(1+Floor[Log10[n]])}, k=n+w ; While[!PrimeQ[k], k+=w]; Floor[k/w]]; s={}; Do[m = 2^MersennePrimeExponent[n]-1; AppendTo[s, pfx[m]], {n, 1, 12}]; s (* Amiram Eldar, Nov 22 2018 based on Andrew Howroyd's pari code *)
  • PARI
    pfx(n)={my(w=10^(1+logint(n,10)), k=n+w); while(!ispseudoprime(k), k+=w); k\w}
    { for(n=1, 500, my(p=1<Andrew Howroyd, Nov 17 2018

A202136 Prefixing digits to Mersenne primes to obtain larger primes.

Original entry on oeis.org

13, 17, 131, 4127, 18191, 10131071, 1524287, 362147483647, 152305843009213693951, 58618970019642690137449562111, 57162259276829213363391578010288127, 55170141183460469231731687303715884105727
Offset: 1

Author

Gilbert Mozzo, Dec 12 2011

Keywords

Comments

The smallest prefixing digits for the Mersenne primes are given in A209385. - Gilbert Mozzo, Mar 07 2012
The next term a(13) has 160 decimal digits. - Andrew Howroyd, Nov 17 2018

Examples

			For Mersenne4: -1 + 2^7 + 4*10^3 = 4127 which is prime.
		

Crossrefs

Programs

  • PARI
    ppfx(n)={my(w=10^(1+logint(n,10)), k=n+w); while(!ispseudoprime(k), k+=w); k}
    { for(n=1, 100, my(p=1<Andrew Howroyd, Nov 17 2018

Formula

Mersenne prime + n*10^D with D = number of digits of the Mersenne prime.

Extensions

a(7)-a(9) added by Gilbert Mozzo, Mar 07 2012
a(10)-a(12) from Andrew Howroyd, Nov 17 2018

A199165 Numbers n such that (6^n-11)/5 is prime.

Original entry on oeis.org

2, 3, 4, 5, 14, 19, 21, 50, 53, 136, 146, 1255, 1448, 1839, 2053, 2496, 4060, 5041, 8410, 14090, 14940, 19759, 29871, 44836, 78175, 114398, 120946, 137845, 461108, 727496, 840316
Offset: 1

Author

Gilbert Mozzo, Nov 03 2011

Keywords

Examples

			a(4) = 5  because  (6^5-11)/5 = 1553  is prime.
		

Crossrefs

Programs

  • Mathematica
    lst={}; Do[If[PrimeQ[(6^n-11)/5], Print[n]; AppendTo[lst, n]], {n, 10^6}]; lst
  • PARI
    is(n)=ispseudoprime((6^n-11)/5) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(23)-a(28) are probable primes discovered by Paul Bourdelais, Nov 15 2011
a(23)-a(28) independently confirmed as probable primes using Mathematica PrimeQ function by Gilbert Mozzo, Nov 21 2011
a(29) corresponds to a probable prime discovered by Paul Bourdelais, Apr 25 2019
a(30) corresponds to a probable prime discovered by Paul Bourdelais, Aug 12 2019
a(31) corresponds to a probable prime discovered by Paul Bourdelais, Jun 18 2020

A198725 Primes of the form (6^n-11)/5.

Original entry on oeis.org

5, 41, 257, 1553, 15672832817, 121871948002097, 4387390128075569, 161656255492952812128627920091307258673, 34917751186477807419783630739722367873841
Offset: 1

Author

Gilbert Mozzo, Oct 29 2011

Keywords

Comments

These primes are also given by sum 6^k -1 with k>0 and are then companions of A165210 which corresponds also to sum 6^k +1 with k>0. (Be careful: there is a shifting between the k and the n values).
Corresponding exponents n are in A199165. - Gilbert Mozzo, Nov 05 2011

Examples

			(6^4-11)/5=257, which is in the sequence because it is prime.
		

Crossrefs

Programs

  • Magma
    [(6^n-11)/5: n in [1..10^3] | IsPrime((6^n-11) div 5)];
    
  • Mathematica
    lst={}; Do[If[PrimeQ[(6^n-11)/5], Print[(6^n-11)/5]; AppendTo[lst, (6^n-11)/5]], {n, 10^6}];
  • PARI
    for(n=1,1e4,if(ispseudoprime(t=6^n\5-2),print1(t", "))) \\ Charles R Greathouse IV, Nov 01 2011

A186811 Twin primes of the form k*6^m-1 and k*6^m+1, where k is prime.

Original entry on oeis.org

11, 13, 17, 19, 29, 31, 41, 43, 71, 73, 101, 103, 107, 109, 137, 139, 179, 181, 281, 283, 431, 433, 617, 619, 641, 643, 821, 823, 827, 829, 1697, 1699, 1877, 1879, 2081, 2083, 2237, 2239, 2381, 2383, 2591, 2593
Offset: 1

Author

Gilbert Mozzo, Feb 27 2011

Keywords

Comments

Twins are obtained by comparing the values given in A185069 and A186782.

Examples

			17*6^13-1 and 17*6^13+1 are twins.
		

Crossrefs

Programs

  • Mathematica
    maxM = 5; r = Select[Prime[Range[PrimePi[2*6^maxM]]], PrimeQ[# + 2] &] + 1; u = Sort[Flatten[Table[Select[r,PrimeQ[#/6^k] &] - 1, {k, maxM}]]]; Sort[Join[u, u + 2]] (* T. D. Noe, Feb 28 2011 *)

A186782 Primes of the form k*6^m-1 with k prime and m an integer.

Original entry on oeis.org

2, 11, 17, 29, 41, 71, 101, 107, 113, 137, 173, 179, 251, 257, 281, 317, 353, 401, 431, 467, 617, 641, 647, 653, 677, 683, 761, 821, 827, 941, 977, 1181, 1193, 1361, 1373, 1433, 1511, 1613, 1697, 1877, 1901, 1907, 2081, 2153, 2237, 2273, 2297, 2333, 2381, 2411, 2591
Offset: 1

Author

Gilbert Mozzo, Feb 26 2011

Keywords

Comments

Companion sequence to A185069.

Examples

			5*6^1-1 = 29 is prime and therefore a term.
7*6^2-1 = 251 is prime and therefore a term.
17*6^13-1 = 222031798271 is prime and therefore a term (see also its companion in A185069).
		

Crossrefs

Cf. A185069.

Programs

  • Magma
    IsA186782:=function(n); k:=n+1; while k mod 6 eq 0 do k:=(k div 6); end while; return IsPrime(k); end function; [ n: n in PrimesUpTo(3000) | IsA186782(n) ]; // Klaus Brockhaus, Mar 01 2011
  • Mathematica
    maxM = 4; p = Prime[Range[PrimePi[2*6^maxM]]];Sort[Flatten[Table[Select[p + 1, PrimeQ[#/6^k] &], {k, 0, maxM}] - 1]] (* T. D. Noe, Feb 28 2011 *)

A186687 Primes of the form k*6^m - 1, where k is a Mersenne prime (A000668) and m >= 0.

Original entry on oeis.org

2, 17, 41, 107, 251, 647, 761, 1511, 23327, 27431, 139967, 3145721, 30233087, 35551871, 6530347007, 39182082047, 91424858111, 146766805631, 6847552083566591, 153558654482644991, 246511875008397311, 14215144014964850687
Offset: 1

Author

Gilbert Mozzo, Feb 25 2011

Keywords

Comments

Twin of A185167.

Examples

			(2^1279-1)*6^1047-1 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..3000] | IsPrime((2^1279-1)*6^n-1)];
  • Mathematica
    Union[Flatten[Table[Select[p*6^Range[0, 30] - 1, # < 10^20 && PrimeQ[#] &], {p, {3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951}}]]]